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Abstract

We propose a near-rational model of retail price adjustment consistent with microeconomic 

and macroeconomic evidence on price dynamics. Our framework is based on the idea 

that avoiding errors in decision making is costly. Given our assumed cost function for error 

avoidance, the timing of fi rms’ price adjustments is determined by a weighted binary logit, 

and the prices they choose are determined by a multinomial logit. We build this behavior into 

a DSGE model, estimate the decision cost function by matching microdata, and simulate 

aggregate dynamics using a tractable algorithm for heterogeneous-agent models. Both 

errors in the prices fi rms set, and errors in the timing of these adjustments, are relevant 

for our results. Errors of the fi rst type help make our model consistent with some puzzling 

observations from microdata, such as the coexistence of large and small price changes, the 

behavior of adjustment hazards, and the relative variability of prices and costs. Errors of 

the second type increase the real effects of monetary shocks, by reducing the correlation 

between the value of price adjustment and the probability of adjustment, (i.e., by reducing 

the \selection effect»). Allowing for both types of errors also helps reproduce the effects 

of trend infl ation on price adjustment behavior. Our model of error-prone pricing in many 

ways resembles a stochastic menu cost (SMC) model, but it has less free parameters 

than most SMC models have, and unlike those models, it does not require the implausible 

assumption of i.i.d. adjustment costs. Our derivation of a weighted logit from control costs 

oers an alternative justication for the adjustment hazard derived by Woodford (2008). Our 

assumption that costs are related to entropy is similar to the framework of Sims (2003) and 

the subsequent \rational inattention» literature. However, our setup has the major technical 

advantage that a fi rm’s idiosyncratic state variable is simply its price level and productivity, 

whereas under rational inattention a fi rm’s idiosyncratic state is its prior (which is generally an 

infi nite-dimensional object).

Keywords: nominal rigidity, logit equilibrium, state-dependent pricing, near rationality, 

information-constrained pricing.

JEL classifi cation: E31, D81, C72.



Resumen

Proponemos un modelo cuasi racional de ajustes de precios en el mercado minorista 

que es coherente con la evidencia micro y macro de la dinámica de los precios. Nuestro 

marco está basado en la idea de que evitar errores en las decisiones implica un coste. 

Dada la asumida función del coste de evitar errores, los momentos escogidos para cambiar 

los precios se determinan por un logit binario ponderado, mientras que los precios escogidos 

se determinan por un logit multinomio. Incorporamos este comportamiento en un modelo 

DSGE, estimamos la función de costes de decisión ajustando los datos micro y simulamos la 

dinámica agregada utilizando un algoritmo manejable de agentes heterogeneos. 

Tanto los errores en los precios que establecen las empresas como los errores en los 

momentos escogidos para cambiar son relevantes para nuestros resultados. Los errores del 

primer tipo ayudan al modelo a reproducir algunas observaciones sorprendentes de los datos 

micro, como la coexistencia de cambios de precios pequeños y grandes, el comportamiento 

de la probabilidad de ajuste en función de la edad de los precios, y la variabilidad relativa de 

los precios y los costes. Los errores del segundo tipo aumentan los efectos reales de shocks 

monetarios, reduciendo la correlación entre el valor de ajustar y la probabilidad de ajuste (es 

decir, reduciendo el «efecto de selección»). Permitir ambos tipos de errores también ayuda 

a reproducir los efectos de la infl ación sobre el comportamiento del ajuste de los precios.

Nuestro modelo de fi jación de precios sujeto a errores se parece en muchos aspectos al 

modelo de costes de menú estocásticos (CME), pero tiene menos parámetros libres que 

la mayoría de los modelos CME y, a diferencia de estos modelos, no requiere el supuesto 

implausible de que los costes de menú estén distribuidos idénticamente y de manera 

independiente. Nuestra derivación de un logit ponderado basado en costes de control ofrece 

una justifi cación alternativa al modelo de ajuste de Woodford (2008). Nuestro supuesto de 

que los costes están relacionados con la entropía es similar al marco de Sims (2003) y a la 

literatura posterior sobre «falta de atención racional». No obstante, nuestro modelo tiene 

la principal ventaja de que la variable de estado idiosincrática de la empresa incluye solo su 

precio y productividad, mientras que en el modelo de «falta de atención racional» la variable de 

estado idiosincrática incluye el prior de la empresa (en general, un objeto de dimensión infi nita).

Palabras clave: nominal, equilibrio logit, fi jación de precios dependiente del estado, cuasi 

racionalidad, fi jación de precios con información restringida.

Códigos JEL: E31, D81, C72.
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1 Introduction1

Economists seeking to explain price stickiness have often appealed to small fixed costs of nom-
inal price changes, commonly called “menu costs” (Barro 1972). If shocks to fundamentals
accumulate relatively slowly, then even small menu costs might suffice to make price adjust-
ments infrequent and to make aggregate dynamics deviate in a nontrivial way from the flexible-
price optimum (Mankiw 1985). However, Golosov and Lucas (2007) showed quantitatively, in
a macroeconomic model with realistically large firm-specific shocks, that fixed menu costs do
little to generate aggregate price stickiness. The dynamics of their model are quite close to
monetary neutrality, so fixed menu costs do not seem promising to explain the substantial real
effects of monetary shocks observed in macroeconomic data (e.g. Christiano, Eichenbaum, and
Evans, 1999). Moreover, detailed microeconomic evidence suggests that menu costs, as usually
interpreted, are only a small fraction of the overall costs of price setting (Zbaracki et al. 2004).
A much larger part of the costs of price adjustment consists of managerial costs associated with
information collection and decision making. This raises the question: can costs related to deci-
sion making explain microeconomic and macroeconomic evidence of price stickiness better than
fixed menu costs do? And furthermore, how exactly should these costs be modeled?

This paper proposes a simple model of price stickiness based on costly decision-making,
estimates its two free parameters, and shows by simulation that it is consistent with a wide
variety of microeconomic and macroeconomic evidence. Our setup is motivated by two key
considerations. First, if choice is costly, then decisions will typically be imperfect, that is,
prone to errors. Thus it is natural to think of the outcomes of decisions as random variables,
rather than treating the action taken as a deterministic function of fundamentals. Second, it is
natural to assume that more precise decisions are more costly than imprecise ones. Motivated
by these points, we adopt the “control cost” approach from game theory (see, for example,
van Damme 1991). Formally, instead of modeling the choice of an optimal action directly, this
approach defines the decision problem as the choice of a probability distribution over possible
actions. The problem is solved subject to a cost function with the property that more precise
decisions (more concentrated distributions) are more costly. Making any given decision in a
perfectly precise way is feasible, but this is usually not worth the cost. Therefore the action
actually taken will be a random variable correlated with fundamentals, instead of depending on
fundamentals in a deterministic way.

In the context of dynamic price setting, a firm faces two key margins of decision: when to
change the price of a product it sells, and what new price to set. We allow for errors on both
these margins. The exact shape of the error distribution depends on the assumed form of the cost
function for precision. It happens to be particularly convenient to measure precision in terms
of entropy, and to define costs as a linear function of the relative entropy of the distribution of
actions, as compared with a uniform distribution. Under these functional forms, the distribution
of actions is a multinomial logit. This implies that the probability of taking any given action is
a smoothly increasing function of the value of that action, compared with the values of other

1We thank Hervé Le Bihan, Anton Cheremukhin, Bartosz Mackowiak, Filip Matejka, Galo Nuño, Antonella
Tutino, Carl Walsh, Mirko Wiederholt, Michael Woodford, and seminar participants at UC Santa Cruz, the Bank
of Spain, T2M 2012, ESSIM 2012, CEF 2012, and EEA-ESEM 2012 for helpful comments. We are especially
grateful to Virgiliu Midrigan for making the Dominick’s price data available to us, and to the James M. Kilts
Center at the Univ. of Chicago GSB, which is the original source of the data. Views expressed here are those of
the authors and do not necessarily coincide with those of the Bank of Spain or the Eurosystem.
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feasible actions. General equilibrium then takes the form of a logit equilibrium:2 each decision
maker plays a logit in which the values of actions are calculated under the assumption that
other decision makers play logits too. Backing out the costs associated with our benchmark
equilibrium, firms in our model spend roughly 0.9% of revenue on decision-making, and in
addition incur a loss of roughly 0.5% of revenue due to suboptimal choices.

The fact that an entropy-related cost function serves to “microfound” a logit distribution
of actions has been shown by many previous authors in game theory and economics (Stahl
1990; Marsili 1999; Mattson and Weibull 2002; Bono and Wolpert 2009; Matejka and McKay
2011).3 However, economics applications have typically focused on decisions taken at known,
exogenously given points in time; it is not immediately obvious how to apply the logit framework
to a context like intermittent price adjustment where a key question is when adjustments should
occur. We study how the derivation of logit choice behavior can be extended so that it is
applicable to fully dynamic decisions of timing. We show that if the decision cost associated
with an adjustment hazard is a linear function of its relative entropy, compared with a uniform
adjustment hazard, then the decision of whether or not to adjust in a given time period takes
the form of a weighted binary logit. Stated differently, while a standard static logit model has a
single free parameter representing the accuracy of decisions, the weighted logit in our dynamic
setup has two free parameters, representing the speed and the accuracy of decision making.
The inclusion of the speed parameter ensures that our model has a well-defined continuous-time
limit, and thus clarifies how parameters must be adjusted if the frequency of the data or the
model simulation is changed.

While it is reasonable to assume that the size and the timing of firms’ adjustments are both
subject to error, we run simulations that shut down one type of mistakes or the other in order
to see what each one contributes to our model’s empirical performance. We find that errors in
the size of price changes help reproduce many phenomena observed in retail price microdata
that seem puzzling in the light of some standard models. In particular, unlike a fixed menu cost
model, our model implies that many large and small price changes coexist (Klenow and Kryvstov
2008; Midrigan 2011; Klenow and Malin 2010, “Fact 7”). It implies that the probability of price
adjustment is nearly flat, but slightly decreasing in the first few months, as found in empirical
studies that control for heterogeneity in adjustment frequency (Nakamura and Steinsson 2008,
“Fact 5”; Klenow and Malin 2010, “Fact 10”). Furthermore, we find that the standard deviation
of price adjustment is mostly constant, independent of the time since last adjustment (Klenow
and Malin 2010, “Fact 10”). Most alternative models, including the Calvo model, instead imply
that price adjustments are increasing in size. Also, our model implies that extremely high or low
prices are more likely to have been set recently than prices near the center of the distribution
(Campbell and Eden 2010). Finally, prices are more volatile than costs, as documented by
Eichenbaum, Jaimovich, and Rebelo (2011), whereas the opposite is true both in the Calvo
model and the fixed menu cost model.

While errors in the size of price adjustments help reproduce patterns in microdata, by them-
selves they do not imply strong real effects of monetary policy. Indeed, since the model with
errors only in the size of price adjustments has only one free parameter, it is hard to get it to
match multiple features of the data simultaneously, and the degree of nonneutrality it implies

2Logit equilibrium is a commonly-applied parametric special case of quantal response equilibrium (see McK-
elvey and Palfrey, 1995, 1998).

3This mathematical fact reflects much older results in physics, where a formally equivalent optimization prob-
lem gives rise to the Boltzmann distribution of particles in a gas.
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is sensitive to the details of our calibration procedure. But whenever we include mistakes in
the timing of price adjustments, our model implies substantial monetary nonneutrality (roughly
halfway between the effects observed in the fixed menu cost model, and the effects observed
in the Calvo model). The cause of the nonneutrality is the same as in the Calvo model: by
decreasing the relation between the value of adjustment and the probability of adjustment, the
“selection effect” highlighted by Caplin and Spulber (1987) and Golosov and Lucas (2007) is
greatly reduced. But in contrast with the Calvo setup, our model also does a good job in repro-
ducing the effects of trend inflation on price adjustment. In particular, it is consistent with the
effect of trend inflation on the typical size of price changes, and on the fraction of adjustments
that are increases, which are both margins where the fixed menu cost model performs poorly.

1.1 Related literature

This paper has links to several areas of economic literature. A huge wave of recent research
has documented the dynamics of price adjustment in new databases from the retail sector (key
papers include Klenow and Kryvtsov, 2008; Nakamura and Steinsson, 2008; and Klenow and Ma-
lin, 2010; and Eichenbaum, Jaimovich, and Rebelo, 2011). In response, many macroeconomists
have simulated numerical models of pricing under fixed or stochastic menu costs in the pres-
ence of aggregate and firm-specific shocks, fitting them to microdata and then studying their
macroeconomic implications. Some influential papers in this tradition include Golosov and Lu-
cas (2007), Midrigan (2011), Dotsey, King, and Wolman (2011), Álvarez, Beraja, González, and
Neumeyer (2011), Kehoe and Midrigan (2010), and Matejka (2011).4 A particularly promising
recent branch of the literature instead considers both a fixed cost of price adjustment and a fixed
cost of acquiring information (Álvarez, Lippi, and Paciello, 2011; Demery, 2012). Like our own
framework, these “menu cost and observation cost” models are highly empirically successful in
spite of relying on only two free parameters to model the adjustment process.

While most recent work on state-dependent pricing assumes prices are set optimally subject
to menu costs, we assume instead that price adjustment involves errors, and we do not assume
any menu costs, at least not as they are usually interpreted. The fact that we allow for errors
may seem like a radical break with standard practice in macroeconomics. But it is consistent
with microeconometrics, where error terms are indispensible (though they are not always in-
terpreted as mistakes). In calibrating a representative-agent macroeconomic model, ignoring
errors is arguably consistent with microeconometric practice, since at least to a first approx-
imation, errors may cancel out. But when calibrating a heterogeneous-agent macroeconomic
model to the full distribution of adjustments in microdata, such an argument does not apply:
if there are any errors at all, these are likely to increase the variance of observed adjustments,
so that a calibration without errors would (for example) mistakenly overestimate the variance
of the underlying exogenous shocks. In this sense, the microdata-based calibration strategies in
most recent literature on state-dependent pricing may represent a more radical departure from
previous microeconomic and macroeconomic methodology than our model does.

Our framework for modeling error-prone behavior, logit equilibrium, has been widely applied
in experimental game theory, where it has helped explain play in a number of games where
Nash equilibrium performs poorly, such as the centipede game and Bertrand competition games

4This paper also builds on two related papers of our own: in Costain and Nakov (2011C) we study the
microeconomic and macroeconomic implications of logit errors in price decisions, while one specification considered
in Costain and Nakov (2011A) imposes logit errors on the timing of price adjustment.
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(McKelvey and Palfrey 1998; Anderson, Goeree, and Holt 2002). It has been much less frequently
applied in other areas of economics; we are unaware of any application of logit equilibrium inside
a dynamic general equilibrium macroeconomic model, other than our own work.5 The fact that
macroeconomic models usually neglect errors may be due, in part, to discomfort with the many
degrees of freedom opened up by moving away from the benchmark of full rationality. However,
since logit equilibrium is just a one-parameter or two-parameter generalization of fully rational
choice, it actually imposes much of the discipline of rationality on the model.6

While McKelvey and Palfrey defined logit equilibrium both for extensive form (1998) and
normal form (1995) games, we found it necessary to extend their framework in order to deal
with the timing of price adjustment.7 Our setup applies the same logic to decisions on the
timing margin that it applies on the pricing margin. In a static context, logit choice is derived
by penalizing the relative entropy of the random choice, relative to a uniform distribution.
Likewise, we derive a weighted binary logit governing the timing of adjustment by penalizing the
relative entropy of the random time of adjustment, relative to a constant adjustment hazard.
In other words, precision in the size of the adjustment is measured by comparing the price
distribution to a uniform distribution; likewise, precision in the timing of adjustment is measured
by comparing the state-dependent hazard rate to a Calvo model. The adjustment hazard we
derive from this specification has the same functional form derived by Woodford (2008), though
his microfoundations differ: he assumes firms face menu costs and observation costs.

Woodford’s (2008, 2009) papers form part of the “rational inattention” literature that follows
Sims (2003) by assuming economic agents face costs associated with information flow in the sense
of Shannon (1948). Measuring the precision of choices in terms of entropy is a feature our model
shares with the rational inattention approach.8 The only difference is that in our setup, the
probability distribution over a firm’s decisions is conditioned on the firm’s true state, whereas
under rational inattention the distribution of decisions is conditional on the firm’s prior about
its true state. In other words, Sims assumes the true state of the world is never known with
certainty, whereas under the “control cost” approach, making optimal choices is costly in spite
of the fact that the true state of the world is known. Ultimately, the main reason we focus
on costs of decision making per se instead of costs of information transmission is a practical
one: it makes our model “infinitely” easier to solve than those of Sims (2003) and Matejka
(2011), because it dramatically reduces the dimensionality of the solution. A firm acting under
rational inattention must condition on a prior over its possible productivity levels (a very high
dimensional object), whereas in our setup, the firm just conditions on its true productivity level.

5The logit choice function is probably the most standard econometric framework for discrete choice, and has
been applied to a huge number of microeconometric contexts. But logit equilibrium, in which each player makes
logit decisions, based on payoff values which depend on other players’ logit decisions, has to the best of our
knowledge rarely been applied outside of experimental game theory.

6Haile, Hortaçsu, and Kosanok (2008) have shown that quantal response equilibrium, which has an infinite
number of free parameters, is impossible to reject empirically. However, this criticism does not apply to logit
equilibrium (the special case of quantal response equilibrium which has been most widely applied in practice)
since it is very tightly parameterized.

7Initially we thought that an extensive form game with a choice between adjustment and nonadjustment at
each point in time would suffice to model the timing decision. But such a framework turns out to be sensitive to
the assumed time period: for a given logit rationality parameter, decreasing the model period eventually drives
errors in the timing of adjustment to zero. Essentially, this approach fails because it does not allow for a free
parameter measuring the speed of decision-making relative to the time scale of the model.

8Another recent application of entropy in economics is the “robust control” methodology of Hansen and Sargent
(2008).
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Moreover, once one knows that entropy reduction costs imply logit, one can simply impose a
logit function directly (and then subtract off the implied costs) rather than explicitly solving for
the form of the error distribution. These facts make our approach entirely tractable in a DSGE
context, as this paper will show.

2 Model

This discrete-time model embeds near-rational price adjustment by firms in an otherwise stan-
dard New Keynesian general equilibrium framework based on Golosov and Lucas (2007). Besides
the firms, there is a representative household and a monetary authority that sets an exogenous
growth process for nominal money balances.

The aggregate state of the economy at time t, which will be identified in Section 2.3, is
called Ωt. Whenever aggregate variables are subscripted by t, this is an abbreviation indicating
dependence, in equilibrium, on aggregate conditions Ωt. For example, consumption is denoted
by Ct ≡ C(Ωt).

2.1 Household

The household’s period utility function is 1
1−γC

1−γ
t −χNt+ ν log(Mt/Pt), where Ct is consump-

tion, Nt is labor supply, and Mt/Pt is real money balances. Utility is discounted by factor β
per period. Consumption is a CES aggregate of differentiated products Cit, with elasticity of
substitution ε:

Ct =

{∫ 1

0
C

ε−1
ε

it di

} ε
ε−1

. (1)

The household’s nominal period budget constraint is∫ 1

0
PitCitdi+Mt +R−1t Bt = WtNt +Mt−1 + Tt +Bt−1 + Zt (2)

where
∫ 1
0 PitCitdi is total nominal consumption. Bt represents nominal bond holdings, with

interest rate Rt − 1; Tt is a lump sum transfer from the central bank, and Zt is a dividend
payment from the firms.

Households choose {Cit, Nt, Bt,Mt}∞t=0 to maximize expected discounted utility, subject to
the budget constraint (2). Optimal consumption across the differentiated goods implies

Cit = (Pt/Pit)
εCt, (3)

so nominal spending can be written as PtCt =
∫ 1
0 PitCitdi under the price index

Pt ≡
{∫ 1

0
Pit

1−εdi
} 1

1−ε

. (4)
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and money use can be written as:

χ = C−γt Wt/Pt, (5)

R−1t = βEt

(
C−γt+1

Πt+1C
−γ
t

)
, (6)

1− v′(mt)

C−γt

= βEt

(
C−γt+1

Πt+1C
−γ
t

)
. (7)

2.2 Monopolistic firms: logit decision-making

Each firm i produces output Yit under a constant returns technology Yit = AitNit, where Ait is
an idiosyncratic productivity process, AR(1) in logs:

logAit = ρ logAit−1 + εait, (8)

and labor Nit is the only input. Firm i is a monopolistic competitor that sets a price Pit, facing
the demand curve Yit = CtP

ε
t P

−ε
it , and must fulfill all demand at its chosen price. It hires in a

competitive labor markets at wage rate Wt, generating profits

Uit = PitYit −WtNit =

(
Pit − Wt

Ait

)
CtP

ε
t P

−ε
it ≡ U(Pit, Ait,Ωt) (9)

per period. Firms are owned by the household, so they discount nominal income between

times t and t+ 1 at the rate β P (Ωt)u′(C(Ωt+1))
P (Ωt+1)u′(C(Ωt))

, consistent with the household’s marginal rate of
substitution.

This paper will consider two near-rational models of firm behavior. In the first model, we
assume firms make error-prone decisions, governed by a logit functional form. In the second
model, which we postpone to Section 3, we derive the logit from a model of costly decisions.

2.2.1 The size of price adjustments

Let V (Pit, Ait,Ωt) denote the nominal value of a firm at time t that produces with productivity
Ait and sells at nominal price Pit. Since we assume firms are not costlessly capable of making
precisely optimal choices, the nominal price Pit at a given point in time will not necessarily be
optimal. Indeed, we assume decisions are subject to errors, meaning that the firm’s price-setting
process will determine a conditional distribution π(P |Ait,Ωt) across possible prices, rather than
picking out a single optimal value. The key property we impose on the distribution π is that the
probability of choosing any given price is a smoothly increasing function of the value of choosing
that price.

As is common in microeconometrics and experimental game theory, we assume the distribu-
tion of errors is given by a multinomial logit. In order to treat the logit function as a primitive
of the model, we define its argument in units of labor time. That is, since the costs of decision-
making are presumably related to the labor effort (in particular, managerial labor) required
to calculate and communicate the chosen price, we divide the values in the logit function by

( ) ( j | )

Defining inflation as Πt+1 ≡ Pt+1/Pt, the first-order conditions for labor supply, consumption,
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choosing price P j ∈ ΓP at time t, conditional on productivity Ait, is given by

π(P j |Ait,Ωt) ≡
exp
(
V (P j ,Ait,Ωt)

κW (Ωt)

)
∑#P

k=1 exp
(
V (Pk,Ait,Ωt)

κW (Ωt)

) (10)

Note that for numerical purposes, we constrain the price choice to a finite discrete grid ΓP ≡{
P 1, P 2, ...P#P

}
. The parameter κ in the logit function can be interpreted as the degree of

noise in the decision process; in the limit as κ → 0 it converges to the policy function under full
rationality, so that the optimal price is chosen with probability one.9

We will use the notation Eπ to indicate an expectation taken under the logit probability
(10). The firm’s expected value, conditional on adjusting to a new price P ′ ∈ ΓP , is then

EπV (P ′, Ait,Ωt) ≡
#P∑
j=1

π(P j |Ait,Ωt)V (P j , Ait,Ωt) (11)

=

#P∑
j=1

exp
(
V (P j ,Ait,Ωt)

κW (Ωt)

)
V (P j , Ait,Ωt)∑#P

k=1 exp
(
V (Pk,Ait,Ωt)

κW (Ωt)

) (12)

Given the potential for errors, it may or may not be profitable for the firm to adjust to a new
price. For clarity, it helps to distinguish the firm’s beginning-of-period price, P̃it ≡ Pi,t−1, from
the end-of-period price Pit that its time t customers pay, which may or may not be the same.
For a firm that begins period t with price P̃it, the gain from adjusting at the beginning of t is:

D(P̃it, Ait,Ωt) ≡ EπV (P ′, Ait,Ωt)− V (P̃it, Ait,Ωt). (13)

Evidently, if P̃it is already close to the optimal price P ∗(Ait,Ωt) ≡ argmaxPV (P,Ait,Ωt), then
D(P̃it, Ait,Ωt) may be negative, implying that it is better to avoid the risk of price-setting errors
by maintaining the current price.

2.2.2 The timing of price adjustments

Thus, the firm faces a binary choice at each point in time: should it adjust its price? Here again,
we assume decisions are error-prone, and we impose a regularity condition analogous to the one
we imposed before: the probability of price adjustment is a smoothly increasing function λ of
the gain from adjustment. In order to take λ as a primitive of the model, we scale by the wage
so that the argument of the function represents units of labor time. Thus, the probability of

adjustment will be defined as λ
(
L
(
P̃it, Ait,Ωt

))
, where L

(
P̃it, Ait,Ωt

)
= D( ˜Pit,Ait,Ωt)

W (Ωt)
expresses

the gains from adjusting in time units by dividing by the wage.
The next question is what functional form to impose on λ. It might seem natural to impose

a simple binary logit that compares the values of adjusting and not adjusting:

exp
(
EπV (P ′,Ait,Ωt)

κW (Ωt)

)
exp
(
EπV (P ′,Ait,Ωt)

κW (Ωt)

)
+ exp

(
V (P j ,Ait,Ωt)

κW (Ωt)

) =

(
1 + exp

(−D(P j , Ait,Ωt)

κW (Ωt)

))−1
(14)

9Alternatively, logit models are often written in terms of the inverse parameter ξ ≡ κ−1, which can be
interpreted as a measure of the degree of rationality.

p g y
the wage rate, W (Ωt), to convert them to time units. Hence, the probability π(P j |Ait,Ωt) of
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This smooth function (i) approaches 1 in the limit as the adjustment gain D increases, (ii)
approaches 0 as D → −∞, and (iii) implies that if the firm is indifferent between adjusting
and not adjusting (Eπ

t V (P ′, Ait,Ωt) = V (P̃it, Ait,Ωt)) then the probability of adjustment in
period t is 0.5. But upon reflection, (iii) cannot be a desirable property, because the period
length imposed on the model is arbitrary.10 But under functional form (14), the probability
of adjustment conditional on indifference is one-half regardless of the value of κ and regardless
of period length. Thus, for example, solving the model with adjustment probability (14) at
weekly frequency would imply continuous-time adjustment rates roughly four times as high as
an otherwise identical solution at monthly frequency.

This problem is solved if we instead impose a weighted binary logit, as follows:

λ

(
D(P j , Ait,Ωt)

κW (Ωt)

)
=

λ̄ exp
(
Eπ

t V (P ′,Ait,Ωt)
κW (Ωt)

)
λ̄ exp

(
Eπ

t V (P ′,Ait,Ωt)
κW (Ωt)

)
+ (1− λ̄) exp

(
V (P j ,Ait,Ωt)

κW (Ωt)

) (15)

=

(
1 + ρ exp

(−D(P j , Ait,Ωt)

κW (Ωt)

))−1
. (16)

where ρ = (1− λ̄)/λ̄. Like (14), this weighted logit goes smoothly from 0 to 1 as the adjustment
gainD goes from −∞ to∞. But when the firm is indifferent between adjusting and not adjusting
(D = 0), the probability of adjustment is λ̄, which is a free parameter. Just as κ−1 is related to
the accuracy of price adjustment, λ̄ is related to the speed of price adjustment. This additional
free parameter can be scaled up or down so that the model can be defined at any (sufficiently
short) discrete time period.

2.2.3 The firm’s Bellman equation

We are now ready to write a Bellman equation for the monopolistic competitor. The value of
selling at any given price equals current profits plus the expected value of future production,
which may or may not occur at a new, adjusted price. Given the firm’s idiosyncratic state
variables (P,A) and the aggregate state Ω, and denoting next period’s variables with primes,
the Bellman equation is

V (P,A,Ω) =

(
P − W (Ω)

A

)
C(Ω)P (Ω)εP−ε + (17)

βE
{

P (Ω)C(Ω′)−γ

P (Ω′)C(Ω)−γ

[(
1− λ

(
D(P,A′,Ω′)

W (Ω′)

))
V (P,A′,Ω′) + λ

(
D(P,A′,Ω′)

W (Ω′)

)
EπV (P ′, A′,Ω′)

]∣∣∣A,Ω} .
Here the expectation E refers to the distribution of A′ and Ω′ conditional on A and Ω, and Eπ

represents an expectation over P ′ conditional on (A′,Ω′), as defined in (12). Note that on the
left-hand side of the Bellman equation, and in the term that represents current profits, P refers
to a given firm i’s price Pit at the end of t, when transactions occur. In the expectation on the
right, P represents the price P̃i,t+1 at the beginning of t+ 1, which may (probability λ) or may
not (1− λ) be adjusted prior to time t+ 1 transactions to a new value P ′.

10Model properties should be approximately invariant to period length as long as we choose a period sufficiently
short so that the probability of adjusting more than once per period is relatively small over all states (P,A,Ω)
that occur with nonnegligible probability in equilibrium.
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It may sound strange to hear (17) called a “Bellman equation” when it contains no “max” or
“min” operator. But a certain degree of optimization is implicit in the probabilities π and λ: as
κ → 0, (17) places probability one on the optimal choice at each decision step, so it becomes a
Bellman equation in the usual sense. More generally, (17) allows for errors, but it always places
higher probability on better choices, except in the limit κ → ∞, in which decisions are perfectly
random.

The right-hand side of the Bellman equation can be simplified by using the notation from
(9), and the rearrangement (1− λ)V + λEπV = V + λ(EπV − V ):

V (P,A,Ω) = U(P,A,Ω) + βE
{

P (Ω)C(Ω′)−γ

P (Ω′)C(Ω)−γ

[
V (P,A′,Ω′) +G(P,A′,Ω′)

]∣∣∣A,Ω} , (18)

where

G(P,A′,Ω′) ≡ λ

(
D(P,A′,Ω′)

W (Ω′)

)
D(P,A′,Ω′). (19)

The terms inside the expectation in the Bellman equation represent the value V of continuing
without adjustment, plus the flow of expected gains G due to adjustment. Since the firm plays
the logit (10) whenever it adjusts, the price process associated with (18) is

Pit =

⎧⎨⎩ P j ∈ ΓP with probability λ
(
D( ˜Pit,Ait,Ωt)

W (Ωt)

)
π(P j |Ait,Ωt)

P̃it ≡ Pi,t−1 with probability 1− λ
(
D( ˜Pit,Ait,Ωt)

W (Ωt)

) . (20)

Equation (20) is written with time subscripts for additional clarity; it governs the price
adjustments taking place at time t. That is, if we write the joint distribution of prices and
productivities across firms at the beginning of period t as Φ̃t(P̃ , A), and the distribution at the
end of period t as Φt(P,A), then (20) governs the transition from Φ̃t(P̃ , A) to Φt(P,A). The
subsequent transition from Φt(P,A) to the distribution Φ̃t+1(P̃ , A) at the beginning of t+ 1 is
given by the productivity shock process (8).

2.2.4 Extreme special cases

This setup nests two special cases which we will compare with the general case in the simulations
that follow. On one hand, we could allow for mistakes in the size of price adjustments, but assume
that the timing of price adjustment is perfectly optimal. That is, we could assume that price
resetting behavior is governed by the distribution (10), while the timing of resets is given by

λ(L) = 1(L ≥ 0), (21)

so that adjustment occurs if and only if it increases value. Since the potential for errors in
(10) makes price adjustment risky, it means firms will avoid adjusting whenever they are suffi-
ciently close to the optimum, which is why we have called this specification “precautionary price
stickiness” in an earlier paper (Costain and Nakov 2011C).

At the opposite extreme, we could assume that any adjusting firm always sets the optimal
price (πt(P

∗, A) = 1 if P ∗ = argmaxPV (P,A), with probability zero for all other prices), while
allowing for “mistakes” in the timing of price adjustment by imposing the weighted logit (16).
Such a framework exhibits near-rational price stickiness, in the sense of Akerlof and Yellen (1985),
since the probability of price adjustment increases smoothly with the value of adjustment, so
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firms frequently leave the price unchanged when the value of adjustment is small. We will call
the functional form (16) for the adjustment probability “Woodford’s logit”, because Woodford
(2008) derived it as a consequence of a Shannon constraint on information flow together with a
fixed cost of purchasing information plus a fixed cost of price adjustment. In the next section,
we will show that it can also be derived from costly error avoidance in the absence of any menu
cost or other physical fixed costs.11

2.3 Monetary policy and aggregate consistency

The nominal money supply is affected by an AR(1) shock process z,12

zt = φzzt−1 + εzt , (22)

where 0 ≤ φz < 1 and εzt ∼ i.i.d.N(0, σ2
z). Here zt represents the rate of money growth at time

t:
Mt/Mt−1 ≡ μt = μ∗ exp(zt). (23)

Seigniorage revenues are paid to the household as a lump sum transfer Tt, and the government
budget is balanced each period, so that Mt = Mt−1 + Tt.

Bond market clearing is simply Bt = 0. When supply equals demand for each good i, total
labor supply and demand satisfy

Nt =

∫ 1

0

Cit

Ait
di = P ε

t Ct

∫ 1

0
P−εit A−1it di ≡ ΔtCt. (24)

Equation (24) also defines a measure of price dispersion, Δt ≡ P ε
t

∫ 1
0 P−εit A−1it di, weighted to

allow for heterogeneous productivity. As in Yun (2005), an increase in Δt decreases the goods
produced per unit of labor, effectively acting like a negative aggregate shock.

At this point, all equilibrium conditions have been spelled out, so an appropriate aggregate
state variable Ωt can be identified. At time t, the lagged distribution of transaction prices
Φt−1(P,A) is predetermined. The time t state can then be defined as Ωt ≡ (zt,Mt−1,Φt−1);
knowing zt and Mt−1, (23) determines the time t nominal money supply Mt. Equations (4), (5),
(7), (8), (9), (??), (18), (19), (20), (22), and (24) together give enough conditions to determine
the distributions Φ̃t and Φt, and the scalars and functions Pt, Vt ≡ V (P,A,Ωt), Ut, Dt, Gt, Ct,
Nt, Wt, zt+1, and Mt. Thus the next state, Ωt+1 ≡ (zt+1,Mt,Φt(P,A)), can be calculated.

2.4 Detrending

So far we have written the value function and all prices in nominal terms, but we can rewrite

the model in real terms by deflating all prices by the nominal price level Pt ≡
{∫ 1

0 Pit
1−εdi

} 1
1−ε

.

11Although we assume Woodford’s functional form for the adjustment probability, this special case of our model
is not exactly the same as Woodford (2009). Since he considered a rational inattention framework, the gains from
adjustment in his model are evaluated in terms of a prior over possible values of the current state, whereas in our
model the gains from adjustment are evaluated in terms of the firm’s true state.

12In related work (Costain and Nakov 2011 B) we have also studied state-dependent pricing models in which
the monetary authority follows a Taylor rule instead of a money growth rule. Our conclusions about the degree of
state-dependence, microeconomic stylized facts, and the real effects of monetary policy were not greatly affected
by the type of monetary policy rule considered. Therefore we focus here on the simple, transparent case of a
money growth rule.
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Thus, define mt ≡ Mt/Pt and wt ≡ Wt/Pt. Given the nominal distribution Φt(Pit, Ait), let us
denote by Ψt(pit, Ait) the distribution over real transaction prices pit ≡ Pit/Pt. Rewriting the
definition of the price index in terms of these deflated prices, we have the following restriction:∫ 1

0
pit

1−εdi = 1.

Notice however that the beginning-of-period real price is not predetermined: if we define p̃it ≡
P̃it/Pt, then p̃it is a jump variable, and so is the distribution of real beginning-of-period prices
Ψ̃t(p̃i, Ai). Therefore we cannot define the real state of the economy at the beginning of t in
terms of the distribution Ψ̃t.

To write the model in real terms, the level of the money supply, Mt, and the aggregate price
level, Pt, must be irrelevant for determining real quantities; and we must condition on a real state
variable that is predetermined at the beginning of period. Therefore, we define the real state at
time t as Ξt ≡ (zt,Ψt−1), where Ψt−1 is the distribution of lagged prices and productivities. Note
that the distribution Ψt−1, together with the shocks zt, is sufficient to determine all equilibrium
quantities at time t: in particular, it will determine the distributions Ψ̃t(p̃i, Ai) and Ψt(pi, Ai).
Therefore Ξt is a correct time t real state variable.

This also makes it possible to define a real value function v, meaning the nominal value
function, divided by the current price level, depending on real variables only. That is,

Vt(Pit, Ait) = V (Pit, Ait,Ωt) = Ptv

(
Pit

Pt
, Ait,Ξt

)
= Ptvt (pit, Ait) .

Deflating in this way, the Bellman equation can be rewritten as follows:
Detrended Bellman equation, general equilibrium :

vt(p,A) =
(
p− wt

A

)
Ctp

−ε + βEt

{
u′(Ct+1)

u′(Ct)

[
vt+1

(
π−1t+1p,A

′)+ gt+1

(
π−1t+1p,A

′)]∣∣∣∣A} , (25)

where
gt+1

(
π−1t+1p,A

′) ≡ λ
(
w−1t+1dt+1

(
π−1t+1p,A

′)) dt+1

(
π−1t+1p,A

′) ,
dt+1

(
π−1t+1p,A

′) ≡ Eπ
t+1vt+1(p

′, A′)− vt+1

(
π−1t+1p,A

′) .
3 Model: control costs

Our logit assumption (10) has the desirable property that the probability of choosing any given
price is a smoothly increasing function of the value of that price. We now show that the logit
functional form can be derived from an assumption that precise managerial decisions are costly.

3.1 Choosing a new price

In order to take human error into account, the decision we describe in this section is not treated
as a choice of a single price, but rather as a choice of a probability distribution over possible
prices. We assume it takes time to narrow down a decision; we model this by assuming that
a more concentrated probability distribution has a higher time cost than a diffuse distribution.
One analytically convenient cost function is linearly related to a measure of the entropy of the
probability distribution.



BANCO DE ESPAÑA 18 DOCUMENTO DE TRABAJO N.º 1301

Thus, suppose that firms must pay “control costs”,13 defined in units of time, to make a
more precise choice (equivalently, to decrease the error in their choice). We will follow Stahl
(1990) and Mattsson and Weibull (2002) by assuming that the cost of increased precision is
proportional to the reduction in the entropy of the choice variable, normalizing the cost of a
perfectly random decision (a uniform distribution) to zero.14 This definition of the cost function
can also be stated in terms of the statistical concept of Kullback-Leibler divergence (also known
as relative entropy). For two distributions π1(p) and π2(p) over p ∈ ΓP , the Kullback-Leibler
divergence D(π1||π2) of π1(p) relative to π2(p) is defined by

D(π1||π2) =
∑
p∈ΓP

π1(p) ln

(
π1(p)

π2(p)

)
. (26)

Our cost function for precision can be defined as follows.

Assumption 1. The time cost of choosing a distribution π(p), for p ∈ ΓP , is
κD(π||u), where u represents the uniform distribution u(p) = 1

#P for p ∈ ΓP .

Here κ represents the marginal cost of entropy reduction, in units of labor time. The cost
function in Assumption 1 can also be written as follows:

κD(π||u) = κ

⎛⎝ln(#P ) +

#P∑
j=1

πj ln(πj)

⎞⎠ (27)

This cost function is nonnegative and convex.15 It takes its maximum value, κ ln(#P ) > 0, for
any distribution that places all probability on a single price p ∈ ΓP . It takes its minimum value,
zero, for a uniform distribution.16 Thus, Assumption 1 means that decision costs are maximized
by perfect precision and minimized by perfect randomness.

This cost function implies that the price choice is distributed as a multinomial logit. Suppose
a firm at time t has already decided to update its price, and is now considering which new
price P j to choose from the finite grid ΓP ≡ {P 1, P 2, ...P#P

}
. It will optimally choose a price

distribution that maximizes firm value, net of computational costs (which we convert to nominal
terms by multiplying by the wage):

Ṽt(A) = max
πj

#P∑
j=1

πjVt(P
j , A)− κWt

⎛⎝ln(#P ) +

#P∑
j=1

πj ln(πj)

⎞⎠ s.t.

#P∑
j=1

πj = 1 (28)

The first-order condition for πj is

V j − κWt(1 + lnπj)− μ = 0,

where μ is the multiplier on the constraint. Some rearrangement yields:

πj = exp

(
V j

κWt
− 1− μ

κWt

)
. (29)

13This term comes from game theory; see Van Damme (1991), Chapter 4.
14See also Marsili (1999), Baron et al. (2002), and Matejka and McKay (2011).
15Cover and Thomas (2006), Theorem 2.7.2.
16If π is uniform, then π(p) = 1/#P for all p ∈ ΓP , which implies

∑
j∈ΓP π(p) ln(π(p)) = − ln(#P ).
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Since the probabilities sum to one, we have exp
(
1 + μ

κWt

)
=
∑

j exp
(

V j

κWt

)
. Therefore the

optimal probabilities (29) reduce to the logit formula (10).
By calculating the logarithm of πj from (29), and plugging it into the objective, we can also

obtain a simple analytical formula for the value function:

Ṽt(A) = κWt ln

(
1

#P

#P∑
k=1

exp

(
Vt(P

k, A)

κWt

))
. (30)

This solution is convenient, since it means we can avoid doing numerical maximization in the
step when we solve for the value of adjusting to a new price.

Thus, this version of our framework involves a cost of price adjustment, but implies that
it should be interpreted as a cost of managerial effort rather than the more standard “menu
cost” interpretation in terms of labor effort for the physical task of altering the posted price. Of
course, if we choose to interpret the logit choice distribution as the result of costly managerial
time, these costs should be subtracted out of the value function. In the description of the firm’s
problem, the expected value of adjustment, previously defined by (13), is now given by

D(P,A,Ω) ≡ Ṽ (A,Ω)− V (P,A,Ω) (31)

The managerial costs of adjustment are netted out of Ṽ , as we see in problem (28).

3.2 Choosing the timing of adjustment

By defining costs in terms of the Kullback-Leibler divergence of the price distribution, relative
to a uniform distribution, we are penalizing any variation in the probability of one price relative
to another. Next, we set up an analogous cost function that penalizes variation in the probability
of adjusting at any given time, relative to another. Since the time to next adjustment could be
arbitrarily far in the future, it makes no sense to penalize variation in the probability of actual
arrival times relative to a uniform distribution (which would have unbounded support, implying
an improper distribution). Instead, it is natural to penalize variation in the arrival rate of the
adjustment time– in other words, to compare the adjustment time to a Poisson process.

Now, suppose the time period is sufficiently short so that we can approximately ignore
multiple adjustments within a single period. If the firm adjusts its price at time t, it obtains
the value gain Dt(Pit, Ait) defined in (31). Suppose it adjusts its price with probability λt. We
measure the cost of this adjustment probability in terms of Kullback-Leibler divergence, relative
to some arbitrary Poisson process with arrival rate λ̄. In other words, we make the following
assumption:

Assumption 2. Choosing to adjust with probability λt ∈ [0, 1] in period t incurs
the following time cost in period t:

κD((λt, 1− λt)||(λ̄, 1− λ̄))

for some constant λ̄ ∈ [0, 1].

Here again, κ is the marginal cost of entropy reduction. Since the decision to adjust or not in
any given period is a binary decision, Assumption 2 states that the decision cost in that period
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depends on the relative entropy of a binary decision with probabilities (λt, 1 − λt), relative to
another binary decision with probabilities (λ̄, 1− λ̄).

In other words, what we are doing here is to benchmark the state-dependent price adjust-
ment process λ(L) in terms of the state-independent Calvo framework. This is a natural way
to penalize variability in the distribution of a random time, just as comparing to a uniform
distribution penalizes variability in the distribution of possible prices. Since a Calvo model
can be defined at any arbitrary adjustment rate λ̄, this setup implies the existence of one free
parameter that measures the speed of decision making, in addition to the parameter κ−1 that
measures the accuracy of decision making.

Given this cost function, the optimal adjustment probability satisfies

Gt(Pit, Ait) = max
λt

Dt(Pit, Ait)λt − κWt

[
λt ln

(
λt

λ̄

)
+ (1− λt) ln

(
1− λt

1− λ̄

)]
(32)

The first order condition is

Dt(Pit, Ait) = κWt

[
lnλt + 1− ln λ̄− ln(1− λt)− 1 + ln(1− λ̄)

]
(33)

which simplifies to
λt

1− λt
=

λ̄

1− λ̄
exp

(
Dt

κWt

)
(34)

Note that in continuous time, λt
1−λt

→ λt, so (34) implies a well-defined continuous-time
limit:

λt = λ̄ exp

(
Dt

κWt

)
∈ [0,∞). (35)

Alternatively, for a non-negligible discrete time interval, we can solve (34) to obtain

λt ≡ λ

(
Dt

κWt

)
=

λ̄

λ̄+ (1− λ̄) exp
(
−Dt
κWt

) (36)

=
λ̄ exp

(
EπVt
κWt

−D(π||u)
)

λ̄ exp
(
EπVt
κWt

−D(π||u)
)
+ (1− λ̄) exp

(
Vit
κWt

) ∈ [0, 1]. (37)

This is the same weighted binary logit we obtained in Section 2.2.2, except that we are now
explicitly subtracting off the costs of choosing the optimal price if the firm chooses to adjust. This
logit hazard was also derived by Woodford (2008) from a model of menu costs and observation
costs.17 The free parameter λ̄ measures the rate of decision making; concretely, the probability
of adjustment in one discrete time period is λ̄ when the firm is indifferent between adjusting
and not adjusting, that is, when Dt = 0.

The value function Gt(P,A) represents the expected gains from adjustment, net of the ad-
justment costs. Here again, we can explicitly solve for the value function. Rearranging the
first-order conditions above, we have

1− λt

1− λ̄
=

λt

λ̄
exp

(−Dt

κWt

)
=

(
1− λ̄+ λ̄ exp

(
Dt

κWt

))−1
(38)

17Woodford’s (2009) paper only states a first-order condition like (34); his (2008) manuscript points out that
the first-order condition implies a logit hazard of the form (36).



BANCO DE ESPAÑA 21 DOCUMENTO DE TRABAJO N.º 1301

Plugging these formulas into the objective function, the value of problem (32) is

Gt(P,A) = κWt ln

(
1− λ̄+ λ̄ exp

(
Dt(P,A)

κWt

))
. (39)

Again, this solution conveniently allows us to avoid a numerical maximization step when we
solve the firm’s problem.

3.3 Recursive formulation of the firm’s problem

Given these results on optimal decision-making under control costs, the firm’s problem can be
written in a fully recursive form, as follows.

V (P,A,Ω) = U(P,A,Ω) + βE
{

P (Ω′)C(Ω′)−γ

P (Ω)C(Ω)−γ

[
V (P,A′,Ω′) +G(P,A′,Ω′)

]∣∣∣A,Ω} , (40)

where

G(P,A′,Ω′) ≡ max
λ

λD(P,A′,Ω′)−W (Ω′)κD ( (λ, 1− λ) || (λ̄, 1− λ̄)
)

= κW (Ω′) ln
(
1− λ̄+ λ̄ exp

(
D(P,A′,Ω′)
κW (Ω′)

))
, (41)

D(P,A′,Ω′) ≡ Ṽ (A′,Ω′)− V (P,A′,Ω′), (42)

and

Ṽ (A′,Ω′) ≡ max
πj

#P∑
j=1

πjV (P j , A′,Ω′)−W (Ω′)κ

⎛⎝ln(#P ) +

#P∑
j=1

πj ln(πj)

⎞⎠
= κW (Ω′) ln

⎛⎝ 1

#P

#P∑
j=1

exp

(
V (P j , A′,Ω′)

κW (Ω′)

)⎞⎠ . (43)

The terms inside the expectation in the Bellman equation represent the value V of continuing
without adjustment, plus the flow of expected gains G due to adjustment. Note that the function
G is known analytically in terms of the functionD = Ṽ −V . But likewise, Ṽ is known analytically
in terms of the function V . In other words, running numerical backwards induction in this
context is especially simple, because all the maximization steps can be performed analytically.

The price process associated with (40) is

Pit =

⎧⎨⎩ P j ∈ ΓP with probability λ
(
D( ˜Pit,Ait,Ωt)

κW (Ωt)

)
π(P j |Ait,Ωt)

P̃it ≡ Pi,t−1 with probability 1− λ
(
D( ˜Pit,Ait,Ωt)

κW (Ωt)

) . (44)

Here, the adjustment probability λ is given by (36), and the price distribution π is given by
(10). Equation (44) is written with time subscripts for additional clarity.
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3.4 Closing the model

We previously discussed household decisions in Section 2.1, and monetary policy and aggregate
consistency in Section 2.3. The only change relative to our previous discussion is that we must
now include control costs in the labor market clearing condition:

Nt = ΔtCt +Kλ
t +Kπ

t (45)

where Kλ
t is total time devoted to deciding whether to adjust prices, and Kπ

t is total time
devoted to choosing which price to set by firms that adjust. To avoid introducing additional
notation, we postpone formulas for Kλ

t and Kπ
t to equations (51)-(52) in Sec. 4.2. Since we have

assumed linear labor disutility, this change in the required level of labor supply has no impact
on the rest of the first-order conditions.

4 Computation

4.1 Outline of algorithm

Computing this model is challenging due to heterogeneity: at any time t, firms will face different
idiosyncratic shocks Ait and will be stuck at different prices Pit. The reason for the popularity
of the Calvo model is that even though firms have many different prices, up to a first-order
approximation only the average price matters for equilibrium. Unfortunately, this property
does not hold in general, and in the current context, we need to treat all equilibrium quantities
explicitly as functions of the distribution of prices and productivity across the economy, and we
must calculate the dynamics of this distribution over time.

We address this problem by implementing Reiter’s (2009) solution method for dynamic
general equilibrium models with heterogeneous agents and aggregate shocks. As a first step,
Reiter’s algorithm calculates the steady state general equilibrium that obtains in the absence of
aggregate shocks. Idiosyncratic shocks are still active, but are assumed to have converged to their
ergodic distribution, so an aggregate steady state means that z = 0, and Ψ, π, C, R, N , and w
are all constant. To solve for this steady state, we will assume that real prices and productivities
always lie on a fixed grid Γ ≡ ΓP × Γa, where Γp ≡ {p1, p2, ...p#p} and Γa ≡ {a1, a2, ...a#a}
are logarithmically-spaced grids of possible values of pit and Ait, respectively. We can then
think of the steady state value function as a matrix V of size #p × #a comprising the values
vjk ≡ v(pj , ak) associated with the prices and productivities

(
pj , ak

) ∈ Γ. Likewise, the price
distribution can be viewed as a #p ×#a matrix Ψ in which the row j, column k element Ψjk

represents the fraction of firms in state (pj , ak) at the time of production. Given this discretized
representation, we can calculate steady state general equilibrium by guessing the aggregate wage
level, then solving the firm’s problem by backwards induction on the grid Γ, then updating the
conjectured wage, and iterating to convergence.

In a second step, Reiter’s method constructs a linear approximation to the dynamics of the
discretized model, by perturbing it around the steady state general equilibrium on a point-by-
point basis. The method recognizes that the Bellman equation and the distributional dynamics
can be interpreted as a large system of nonlinear first-order autonomous difference equations
that define the aggregate dynamics. For example, away from steady state, the Bellman equation
relates the #p×#a matrices Vt and Vt+1 that represent the value function at times t and t+1.
The row j, column k element of Vt is vjkt ≡ vt(p

j , ak) ≡ v(pj , ak,Ξt), for
(
pj , ak

) ∈ Γ. Given
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this representation, we no longer need to think of the Bellman equation as a functional equation
that defines v(p, a,Ξ) for all possible idiosyncratic and aggregate states p, a, and Ξ; instead,
we simply treat it as a system of #p#a expectational difference equations that determine the
dynamics of the #p#a variables vjkt . We linearize this large system of difference equations
numerically, and then solve for the saddle-path stable solution of our linearized model using the
QZ decomposition, following Klein (2000).

The beauty of Reiter’s method is that it combines linearity and nonlinearity in a way ap-
propriate for the model at hand. In the context of price setting, aggregate shocks are likely to
be less relevant for individual firms’ decisions than idiosyncratic shocks; Klenow and Kryvstov
(2008), Golosov and Lucas (2007), and Midrigan (2008) all argue that firms’ prices are driven
primarily by idiosyncratic shocks. To deal with these big firm-specific shocks, we treat functions
of idiosyncratic states in a fully nonlinear way, by calculating them on a grid. But this grid-
based solution can also be regarded as a large system of nonlinear equations, with equations
specific to each of the grid points. When we linearize each of these equations with respect to
the aggregate dynamics, we recognize that aggregate changes are unlikely to affect individual
value functions in a strongly nonlinear way. That is, we are implicitly assuming that aggregate
shocks zt and changes in the distribution Ψt have sufficiently smooth impacts on individual
values that a linear treatment of these effects suffices. On the other hand, we need not start
from any assumption of approximate aggregation like that required for the Krusell and Smith
(1998) method, nor do we need to impose any particular functional form on the distribution Ψ.

Describing the distributional dynamics involves defining various matrices related to quantities
on the grid Γ. From here on, we use bold face to identify matrices, and superscripts to identify
notation related to grids. Matrices associated with the grid Γ are defined so that row j relates to
the price pj ∈ Γp, and column k relates to the productivity ak ∈ Γa. Besides the value function
matrixVt, we also define matricesDt, Gt, and Λt, to represent the functions dt, gt, and λ(dt/wt)
at points on the grid Γ. The distribution at the time of production is given by Ψt, with elements
Ψjk

t representing the fraction of firms with real price pit ≡ Pit/Pt = pj and productivity Ait = ak

at the time of production. We also define the beginning of period distribution Ψ̃t, with elements
Ψ̃jk

t representing the fraction of firms with real price p̃it ≡ P̃it/Pt = pj and productivity Ait = ak

at the beginning of the period. Shortly we will define the transition matrices that govern the
relationships between all these objects.

4.2 The discretized model

In the discretized model, the value function Vt is a matrix of size #p × #a with elements
vjkt ≡ vt(p

j , ak) ≡ v(pj , ak,Ξt) where
(
pj , ak

) ∈ Γ. Other relevant #p × #a matrices include
the adjustment values Dt, the probabilities Λt, and the expected gains Gt, with (j, k) elements
given by18

djkt ≡ dt(p
j , ak) ≡ Eπ

t vt(p, a
k)− vt(p

j , ak) (46)

λjk
t ≡ λ

(
djkt /wt

)
(47)

gjkt ≡ λjk
t djkt (48)

18Actually, (47) is a simplified description of λjk
t . While (47) implies that λjk

t represents the function λ(L)
evaluated at the log price grid point pj and log productivity grid pointak, in our computations λjk

t actually

represents the average of λ(L) over all log prices in the interval
(

pj−1+pj

2
, pj+pj+1

2

)
, given log productivity ak.

Calculating this average requires interpolating the function dt(p, a
k) between price grid points. Defining λjk

t this
way ensures differentiability with respect to changes in the aggregate state Ωt.



BANCO DE ESPAÑA 24 DOCUMENTO DE TRABAJO N.º 1301

Finally, we also define a matrix of logit probabilities Πt, which has its (j, k) element given by

πjk
t = πt(p

j |ak) ≡
exp
(
vjkt /(κwt)

)
∑#p

n=1 exp
(
vjnt /(κwt)

)
which is the probability of choosing real price pj conditional on productivity ak if the firm
decides to adjust its price at time t.

The control cost version of the model differs only in the definitions of djkt and gjkt . Equations
(46) and (48) are replaced by

djkt ≡ dt(p
j , ak) ≡ Eπ

t vt(p, a
k)− vt(p

j , ak)− wtκ

(
ln(#P ) +

#P∑
l=1

πlk
t lnπlk

t

)
(49)

gjkt ≡ λjk
t djkt − wtκ

(
λjk
t ln

(
λjk
t

λ̄

)
+ (1− λjk

t ) ln

(
1− λjk

t

1− λ̄

))
(50)

Total time devoted to deciding whether to adjust, and which price to set, can then be calculated
as

Kπ
t = κ

#P∑
j=t

#a∑
k=1

Φjk
t λjk

t

(
ln(#P ) +

#P∑
l=1

πlk
t lnπlk

t

)
(51)

Kλ
t = κ

#P∑
j=t

#a∑
k=1

Φjk
t

(
λjk
t ln

(
λjk
t

λ̄

)
+ (1− λjk

t ) ln

(
1− λjk

t

1− λ̄

))
(52)

We can now write the discrete Bellman equation and the discrete distributional dynamics in
a precise way. First, consider how the beginning-of-period distribution Ψ̃t is derived from the
lagged distribution Ψt−1. Idiosyncratic productivities Ai are driven by an exogenous Markov
process, which can be defined in terms of a matrix S of size #a × #a. The row m, column k
element of S represents the probability

Smk = prob(Ait = am|Ai,t−1 = ak)

Also, beginning-of-period real prices are, by definition, adjusted for inflation. Ignoring grids,
the time t− 1 real price pi,t−1 would deflated to p̃it ≡ pi,t−1/πt ≡ pi,t−1Pt−1/Pt at the beginning
of t. To keep prices on the grid, we define a #p ×#p Markov matrix Rt in which the row m,
column l element is

Rml
t ≡ prob(p̃it = pm|pi,t−1 = pl)

When the deflated price pi,t−1/πt falls between two grid points, matrix Rt must round up or
down stochastically. Also, if pi,t−1/πt lies outside the smallest and largest element of the grid,
then Rt must round up or down to keep prices on the grid.19 Therefore we construct Rt

according to

19In other words, we assume that any nominal price that would have a real value less than p1 after inflation
is automatically adjusted upwards so that its real value is p1. This assumption is made for numerical purposes
only, and has a negligible impact on the equilibrium as long as we choose a sufficiently wide grid Γp. If we were to
compute examples with trend deflation, we would need to make an analogous adjustment to prevent real prices
from exceding the maximum grid point p#

p

.
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Rml
t = prob(p̃it = pm|pi,t−1 = pl, πt) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if π−1t pl ≤ p1 = pm

π−1
t pl−pn−1

pn−pn−1 if p1 < pm = min{p ∈ Γp : p ≥ π−1t pl}
pn+1−π−1

t pl

pn+1−pn if p1 ≤ pm = max{p ∈ Γp : p < π−1t pl}
1 if π−1t pl > p#

p
= pm

0 otherwise
(53)

Combining the adjustments of prices and productivities, we can calculate the beginning-of-
period distribution Ψ̃t as a function of the lagged distribution of production prices Ψt−1:

Ψ̃t = Rt ∗Ψt−1 ∗ S′

where ∗ represents ordinary matrix multiplication. The simplicity of this equation comes partly
from the fact that the exogenous shocks to Ait are independent of the inflation adjustment that
links p̃it with pit−1. Also, exogenous shocks are represented from left to right in the matrix Ψt,
so that their transitions can be treated by right multiplication, while policies are represented
vertically, so that transitions related to policies can be treated by left multiplication.

To calculate the effects of price adjustment on the distribution, let Epp and Epa be matrices
of ones of size #P×#P and #P×#a, respectively. Now suppose a firm has beginning-of-t price
p̃it ≡ P̃it/Pt = pj ∈ Γp and productivity Ait = ak ∈ Γa. This firm will adjust its production

price with probability λjk
t , or will leave it unchanged (pit = p̃it = pj) with probability 1−λjk

t . If
adjustment occurs, the probabilities of choosing all possible prices are given by the matrix Πt.
Therefore we can calculate distribution Ψt from Ψ̃t as follows:

Ψt = (Epa−Λ) . ∗ Ψ̃t +Πt . ∗ (Epp ∗ (Λ . ∗ Ψ̃t)) (54)

where (as in MATLAB) the operator .∗ represents element-by-element multiplication, and ∗
represents ordinary matrix multiplication.

The same transition matrices R and S show up when we write the Bellman equation in
matrix form. Let Ut be the #p ×#a matrix of current payoffs, with elements

ujkt ≡
(
pj − wt

ak

)
(pj)−εCt (55)

for
(
pj , ak

) ∈ Γ. Then the Bellman equation is
Dynamic general equilibrium Bellman equation, matrix version :

Vt = Ut + βEt

{
u′(Ct+1)

u′(Ct)

[
R′t+1 ∗ (Vt+1 +Gt+1) ∗ S

]}
(56)

The expectation Et in the Bellman equation refers only to the effects of the time t+1 aggregate
shock zt+1, because the shocks and dynamics of the idiosyncratic state (pj , ak) ∈ Γ are completely
described by the matrices R′t+1 and S. Note that since the Bellman equation iterates backwards
in time, its transitions are represented by R′ and S, whereas the distributional dynamics iterate
forward in time and therefore involve R and S′.

While equilibrium seems to imply a complicated system of equations, the steady state is
easy to solve because it reduces to a small scalar fixed-point problem, which is the first step of
Reiter’s (2009) method. This first step is discussed in the next subsection. The second step of
the method, in which we linearize all equilibrium equations, is discussed in subsection 4.4.



BANCO DE ESPAÑA 26 DOCUMENTO DE TRABAJO N.º 1301

4.3 Step 1: steady state

In the aggregate steady state, the shocks are zero, and the distribution takes some unchanging
value Ψ, so the state of the economy is constant: Ξt ≡ (zt,Ψt−1) = (0,Ψ) ≡ Ξ. We indicate
the steady state of all equilibrium objects by dropping the time subscript t, so the steady state
value function V has elements vjk ≡ v(pj , ak,Ξ) ≡ v(pj , ak).

Long run monetary neutrality in steady state implies that the rate of nominal money growth
equals the rate of inflation:

μ = π

Morever, the Euler equation reduces to

π = βR

Since the interest rate and inflation rate are observable, together they determine the required
parameterization of β. The steady-state transition matrix R is known, since it depends only on
steady state inflation π.

We can then calculate general equilibrium as a one-dimensional root-finding problem: guess-
ing the wage w, we have enough information to solve the Bellman equation and the distributional
dynamics.20 Knowing the steady state aggregate distribution, we can construct the real price
level, which must be one. Thus finding a value of w at which the real price level is one amounts
to finding a steady state general equilibrium.

More precisely, for any w, we can calculate

C =
(χ
w

)1/γ
(57)

and then construct the matrix U with elements

ujk ≡
(
pj − w

ak

)
(pj)−εC (58)

We then find the fixed point of the value function:

V = U+ βR′ ∗ (V +G) ∗ S (59)

together with the logit probability function Π, with elements

πjk = π(pj |ak) ≡ exp
(
vjk/(κw)

)∑#p
n=1 exp (v

jn/(κw))

We can then find the steady state distribution as the fixed point of

Ψ = (Epa−Λ) . ∗ Ψ̃+Π . ∗ (Epp ∗ (Λ . ∗ Ψ̃)) (60)

Ψ̃ = R ∗Ψ ∗ S′ (61)

Finally, we check whether

1 =

#p∑
j=1

#a∑
k=1

Ψjk
(
pj
)1−ε ≡ p(w) (62)

If so, an equilibrium value of w has been found.

20There are other, equivalent ways of describing the root-finding problem: for example, we could begin by
guessing C. Guessing w is convenient since we know that in a representative-agent, flexible-price model, we have
w = ε−1

ε
. This suggests a good starting value for the heterogeneous-agent, sticky-price calculation.
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4.4 Step 2: linearized dynamics

Given the steady state, the general equilibrium dynamics can be calculated by linearization.
To do so, we eliminate as many variables from the equation system as we can. For additional
simplicity, we assume linear labor disutility, x(N) = χN . Thus the first-order condition for
labor reduces to χ = wtu

′(Ct), so we don’t actually need to solve for Nt in order to calculate
the rest of the equilibrium.21 We can then summarize the general equilibrium equation system
in terms of the exogenous shock process zt, the lagged distribution of idiosyncratic states Ψt−1,
which is the endogenous component of the time t aggregate state; and finally the endogenous
’jump’ variables including Vt, Πt, Ct, Rt, and πt. The equation system reduces to

zt = φzzt−1 + εzt (63)

Ψt = (Epa −Λt) . ∗ Ψ̃t +Πt . ∗ (Epp ∗ (Λt . ∗ Ψ̃t)) (64)

Vt = Ut + βEt

{
u′(Ct+1)

u′(Ct)

[
R′t+1 ∗ (Vt+1 +Gt+1) ∗ S

]}
(65)

R−1t = βEt

(
u′(Ct+1)

πt+1u′(Ct)

)
(66)

1 =

#p∑
j=1

#a∑
k=1

Ψjk
t

(
pj
)1−ε

(67)

If we now collapse all the endogenous variables into a single vector
−→
X t ≡

(
vec (Ψt−1)′ , vec (Vt)

′ , Ct, Rt, πt

)′
then the whole set of expectational difference equations (63)-(67) governing the dynamic equi-
librium becomes a first-order system of the following form:

EtF
(−→
X t+1,

−→
X t, zt+1, zt

)
= 0 (68)

where Et is an expectation conditional on zt and all previous shocks.

To see that the variables in vector
−→
X t are in fact the only variables we need, note that given

πt and πt+1we can construct Rt and Rt+1. Given Rt, we can construct Ψ̃t = Rt ∗ Ψt−1 ∗ S′

from Ψt−1. Under linear labor disutility, we can calculate wt = χ/u′(Ct), which gives us all

the information needed to construct Ut, with (j, k) element equal to ujkt ≡ (pj − wt

ak

)
(pj)−εCt.

Finally, givenVt andVt+1 we can constructΠt, Dt, andDt+1, and thusΛt andGt+1. Therefore

the variables in
−→
X t and zt are indeed sufficient to evaluate the system (63)-(67).

Finally, if we linearize system F numerically with respect to all its arguments to construct
the Jacobian matrices A ≡ D−→

X t+1
F , B ≡ D−→

X t
F , C ≡ Dzt+1F , and D ≡ DztF , then we obtain

the following first-order linear expectational difference equation system:

EtAΔ
−→
X t+1 + BΔ−→

X t + EtCzt+1 +Dzt = 0 (69)

where Δ represents a deviation from steady state. This system has the form considered by Klein
(2000), so we solve our model using his QZ decomposition method.22

21The assumption x(N) = ξN is not essential; the more general case with nonlinear labor disutility simply
requires us to simulate a larger equation system that includes Nt.

22Alternatively, the equation system can be rewritten in the form of Sims (2001). We chose to implement the
Klein method because it is especially simple and transparent to program.
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5 Results

We next describe the calibration of the model and report simulation results. We describe the
model’s steady state implications for microdata on price adjustments, both at a low inflation rate,
and as the rate of trend inflation is substantially increased. We also analyze the macroeconomic
implications for the effects of monetary policy shocks. The simulations are performed at monthly
frequency, and all data and model statistics are monthly unless stated otherwise.

Our focus throughout is on understanding the implications of error-prone price setting.
Therefore, to see how each margin of error affects the results, and to see how a pure logit
equilibrium compares with a logit equilibrium derived from control costs, we report results for
six specifications that turn on or shut down different aspects of the model one by one.23 Two
specifications allow for errors in the size of price adjustments, but not in their timing, and
are labelled “PPS”, for “precautionary price stickiness”. Two specifications allow for errors
in the timing of price adjustments, but not in their size; these are labelled “Woodford”, since
the adjustment hazard takes the functional form derived in Woodford (2008). The specifications
with both types of errors are labelled “nested”. For all these cases, we report the model based on
control costs, as well as a model that imposes errors of logit functional form exogenously, without
deriving them from control costs. Whenever we refer to the “main model” or the “benchmark
model”, we mean the nested control cost specification, in which both types of errors are present,
and decision costs are subtracted out of profits, as described in (40)-(44).

5.1 Parameters

The key parameters related to the decision process are the rate and noise parameters λ̄ and κ.
We estimate these two parameters to match two steady-state properties of the price process:
the average rate of adjustment, and the histogram of nonzero log price adjustments, in the
Dominick’s supermarket dataset described in Midrigan (2011).24 More precisely, let h be a
vector of length #h representing the frequencies of nonzero log price adjustments in a histogram
with #h fixed bins.25 We choose λ̄ and κ to minimize the following distance criterion:

distance =
√
#h ||λmodel − λdata||+ ||hmodel − hdata|| (70)

where || • || represents the Euclidean norm, λmodel and λdata represent the average frequency of
price adjustment in the simulated model and in the Dominick’s dataset, and hmodel and hdata
are the vectors of bin frequencies for nonzero price adjustments in the model and the data.26

Clearly these features of the data are informative about the two parameters, since λ̄ will shift
the frequency of adjustment and κ will spread the distribution of price adjustments.

The rest of the parameterization is less crucial for our purposes. Hence, for comparability,
we take our utility parameterization directly from Golosov and Lucas (2007). Thus, we set
the discount factor to β = 1.04−1/12. Consumption utility is CRRA, u(C) = 1

1−γC
1−γ , with

23Alternatively, we could compare our main model to more familiar price adjustment models. But in Costain
and Nakov (2011C) we already compared our “PPS” specification to the Calvo and menu cost models. We refer
readers to that paper for comparable tables and graphs documenting those specifications.

24The weekly adjustment rate in the Dominick’s data is aggregated to a monthly rate for comparability with
the model.

25See Figure 3, which compares these histograms in the data and in all specifications of our model.
26Since the Euclidean norm of a vector scales with the square root of the number of elements, we scale the first

term by
√
#h to place roughly equal weight on the two components of the distance measure.
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γ = 2. Labor disutility is linear, x(N) = χN , with χ = 6. The elasticity of substitution in
the consumption aggregator is ε = 7. Finally, the utility of real money holdings is logarithmic,
v(m) = ν log(m), with ν = 1. We assume productivity is AR(1) in logs: logAit = ρ logAit−1+εat ,
where εat is a mean-zero, normal, iid shock. We take the autocorrelation parameter from Blundell
and Bond (2000), who estimate it from a panel of 509 US manufacturing companies over 8 years,
1982-1989. Their preferred estimate is 0.565 on an annual basis, which implies ρ around 0.95
at monthly frequency. The variance of log productivity is σ2

a = (1 − ρ2)−1σ2
ε, where σ2

ε is the
variance of the innovation εat . We set the standard deviation of log productivity to σa = 0.06,
which is the standard deviation of “reference costs” estimated by Eichenbaum, Jaimovich, and
Rebelo (2011). The rate of money growth is set to match the roughly 2% annual inflation rate
observed in the Dominick’s dataset.

Parameter estimates for the six specifications we compare are reported in Table 1. Note that
the PPS specification has only one free parameter: the level of noise κπ in the pricing decision.
The Woodford model has two free parameters: the rate parameter λ̄, and the level of noise κλ
in the timing decision. The nested model features the same two free parameters, except that
the noise parameter now applies both to the timing and pricing decisions (κπ = κλ ≡ κ).27 The
estimated parameters are similar across the logit and control cost specifications, except for the
“PPS” case, where the estimated noise is much smaller under control costs than it is under an
exogenous logit. Overall the estimates imply a low level of noise, compared to values typically
reported in experimental studies (κ = 0 would represent errorless choice). The rate parameter λ̄
is estimated to be lower than the observed adjustment frequency in the Woodford specification,
but is twice as high as the observed adjustment frequency in the main model, marked “nested
control”. The combination of a high underlying adjustment rate, together with a low noise
parameter, indicates a high degree of rationality in this estimate of the benchmark model.

5.2 Results: distribution of price adjustments

The steady state behavior of the main model is illustrated in Fig. 1. The first panel of the
figure illustrates the distribution of prices chosen conditional on productivity, π(p|a); the axes
show prices and costs (inverse productivity), expressed in log deviations from their uncondi-
tional means. As expected, the mean price chosen increases roughly one-for-one with cost, but
the smooth bell-shape of the distribution conditional on a reflects the presence of errors. Simi-
larly, the second panel shows the probability λ(d(p, a)/(κw)) of price adjustment conditional on
beginning-of-period price and productivity. Near the 45o-line, the adjustment probability reaches
a (strictly positive) minimum; moving away from the 45o-line, it increases smoothly towards one.
The third panel is a contour plot of the end-of-period distribution of prices and productivities,
Ψ(p, a). Dispersion in the horizontal direction represents variation in idiosyncratic productivity
over time; dispersion in the vertical direction represents deviation from the conditionally-optimal
price, caused either by failures to adjust in response to productivity shocks, or by errors when
adjustment occurs. This distribution spreads out horizontally at the beginning of the period
when new productivity shocks hit. The resulting distribution of adjusting firms is illustrated
by the contour plot in the last panel of the figure. The most frequently observed adjustments
occur at firms whose prices deviate from their conditionally-optimal values by 5%-10%; firms

27It would also be interesting to allow the two noise parameters of the nested specification to differ, but we
leave this for future work, since the simple cross-sectional statistics we are using may not suffice to identify these
parameteres separately.
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with smaller deviations have little incentive to adjust, while firms with larger deviations are
rare because adjustment usually occurs before a larger deviation is reached. The asymmetry
observed in the density of adjustments reflects the fact that downward price errors (implying
high sales at an unprofitably low price) are more costly than upward price errors.

Table 2 also compares other specifications of the model. It reports statistics from the steady
state of each specification, and the corresponding statistics from the Dominick’s data. All speci-
fications successfully match the 10.2% monthly adjustment frequency observed in the data. But
the typical size of the adjustments is too small in the Woodford model and in PPS-control,
whereas it is too large in PPS-logit. In contrast, the two free parameters of the nested specifi-
cation help it match both the frequency and the size of price changes simultaneously. Thus the
main model is more consistent with the mean absolute change, the standard deviation of the
adjustments, the fraction of small adjustments, and even the kurtosis of the data than the other
specifications are. The only reported statistic where the nested model performs less well is the
fraction of positive adjustments, which is matched very well by the Woodford specification and
by PPS-control.

These differences in adjustment behavior can be further understood by graphing the his-
togram of nonzero log price adjustments. First of all, Figure 2 graphs the distribution of price
changes in the data (shaded blue bars) and the distributions implied by models with fixed menu
costs (FMC) or Calvo (1983) adjustment behavior. In the data, the distribution of nonzero
adjustments exhibits a small peak of negative adjustments, a high peak of positive adjustments,
and very fat tails. Under FMC, there are two sharp spikes in the histogram, representing small
price increases or decreases occurring near the (S,s) bands. Under the Calvo specification, the
distribution of adjustments is narrow and unimodal, with a sharp central peak around zero.

Next, in Fig. 3, we compare the price adjustment histograms associated with all six versions
of our error-prone model. The vector of bin frequencies for the 81 bars in these histograms is
the object that enters the second term of the distance criterion (70). For the PPS model (first
panel of the figure), implications differ strongly between the exogenous logit and control cost
specifications. As Table 1 showed, the estimated noise is much lower when control costs are
included. Ceteris paribus, adjustment is less likely if it requires a decision cost; hence to match
the same empirical frequency of adjustment in the logit and control cost specifications, price
adjustment must be less risky (must have a lower κ) under control costs. Thus, our estimate of
the control cost version of the PPS model has extremely low noise, resulting in behavior that is
very close to full rationality. The implied distribution of price adjustments resembles the FMC
case from Fig. 2, with two sharp spikes representing increases or decreases occurring near a pair
of (S,s) bands. On average, this implies much smaller price adjustments than those in the data,
with little mass in the tails of the distribution.

Compared with PPS-control, the exogenous logit version of the PPS model requires much
more noise to produce the same average adjustment frequency, implying a smoother, wider, more
bell-shaped distribution than that observed in the data. In summary, the single free parameter
of the PPS framework provides insufficient flexibility to match both the average frequency and
the average size of price adjustments. In Costain and Nakov (2011C), for a different dataset
with a zero average inflation rate, we reported an estimate of the PPS model that matched both
the frequency and size of price adjustments well. But this finding was essentially coincidental; in
the current dataset matching the mean adjustment frequency either implies price changes that
are too small (assuming control costs) or too large (assuming an exogenous logit).
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tential to fit both the frequency and size of adjustments. However, with no errors in the chosen
price, this specification implies a much tighter distribution of adjustments than those observed
in the Dominick’s data. While the data show some adjustments as large as ±50%, our estimate
of the Woodford specification implies no price changes larger than ±20%. While a sufficiently
high volatility of underlying costs would spread out the distribution of adjustments observed in
this specification, by itself this would be unlikely to reproduce the fat tails of the empirical dis-
tribution of price changes. Indeed, while the standard deviation of adjustments in the Woodford
specification is slightly larger than in the Calvo model from Fig. 2, the tails of the distribution
drop off much more sharply in the Woodford case than they do in the Calvo case.

The nested specifications (in both its control cost and pure logit versions) has a much easier
time matching the price change distribution. Like the Woodford model, it has only two param-
eters (since we are constraining the noise in the timing decision to be the same as the noise
in the pricing decision). But the pricing errors present in the nested model make it easier to
generate a wide, fat-tailed distribution than it is in the Woodford model. At the same time, the
parameter λ̄ helps ensure that the nested model gets the adjustment frequency right. Stated
differently, the restriction κπ = 0 imposed by the Woodford specification strongly constrains
its ability to match the data, whereas the restriction κπ = κλ that we have maintained when
estimating the nested specification does not seem to be strongly rejected by the data. While
the main peak is smoother than that observed in the data, the nested model is quite successful
both in reproducing the average size of price adjustments and in generating relatively fat tails.

Another way to look at the adjustment process is to consider the losses generated by non-
adjustment. Fig. 4 shows the distribution of losses d(p, a) from nonadjustment, expressed as
a percentage of average monthly revenue, at the beginning and end of the period, under the
benchmark specification. The distribution of losses is strongly skewed out to the right; losses of
up to 7% of revenue are visible in the histogram. However, most of the mass is concentrated at
the left, with a mode at negative 7%. The firms at the left end of this distribution are strictly
better off not adjusting, because adjustment would require a decision cost, and would also imply
a risk of setting the wrong price (this latter phenomenon is what we call “precautionary price
stickiness”). Adjustment eliminates some, but not all, of the largest losses, so the beginning-of-
period distribution (shaded blue bars) shifts slightly leftward (black line) before production and
transactions occur. Adjustment fails to completely eliminate the right tail of the distribution
for two reasons: some firms that would be expected to benefit from adjustment fail to adjust,
and some firms that do adjust make costly errors.

Losses are also reported in the last few lines of Table 2. The last line of the table shows the
average monthly gain from eliminating all decision costs and frictions, as a fraction of average
monthly revenues.28 The previous two lines decompose the losses, showing the costs Kπ of
choosing prices and the costs Kλ of deciding the timing of adjustment, as defined in (51)-(52).
The part of the loss reported in the last line that is not attributable to decision costs results from
errors. The largest total loss occurs in the nested control costs model, where choosing prices cost
firms half of one percent of revenues, choosing the timing of adjustment costs one-third of one
percent of revenues, and errors eat up another half of a percent of revenues. In a case study of
an industrial firm, Zbaracki et al. (2004) find that decision and negotiation costs associated with
price adjustment eat up roughly 1.2% of revenues; this is larger than the decision costs, 0.87%,

28The table shows the gain from that would accrue to one infinitesimal firm if it could make perfect decisions
costlessly, holding fixed the behavior of all other firms.

Since the Woodford specification has two free parameters, it might seem to have more po-
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that we find for the nested control model.29 They do not attempt to calculate the revenue loss
caused by the suboptimality of the price process at the firm they study.

5.3 Results: some puzzles from microdata

Our model of price adjustment also performs well in reproducing several puzzling observa-
tions from microdata. First, note that our main (“nested”) model matches well Eichenbaum,
Jaimovich, and Rebelo’s (2011) observation that prices are more volatile than costs (see Table
2). In their data, the ratio of the standard deviation of log reference prices to log reference
costs is above unity (1.15), while both the menu cost and the Calvo model predict that this
ratio should be less than one.30 This is because in the menu cost and the Calvo model optimal
prices anticipate mean reversion of productivity shocks; prices are set conservatively, taking into
account future conditions. Likewise, prices are less volatile than costs in the Woodford version
of our model, since it does not allow for pricing errors. However, in the nested and PPS-logit
versions, price dispersion is augmented by the possibility of price errors, which results in a higher
volatility of prices than of costs, as in the data.

Figures 5-7 show how the six specifications compare with some statistics from microdata that
condition on the time since last adjustment. First, one might intuitively expect price adjustment
hazards to increase with the time since last adjustment. But empirically, price adjustment
hazards are decreasing with the time since adjustment, even after controlling for heterogeneity,
as in Figure 5, where the blue shaded bars are the adjustment hazards reported by Nakamura and
Steinsson (2008). Comparing the various versions of our model we see that under Woodford’s
logit the adjustment hazard increases over time, since newly set prices are conditionally optimal,
and subsequent inflation and productivity shocks gradually drive prices out of line with costs. In
contrast, under the PPS-logit specification the adjustment hazard decreases very strongly with
the time since last adjustment. This is a consequence of the relatively noisy decisions implied
by the estimated parameters for this specification– prices adjust again quickly after a large error
occurs. A similar effect exists in PPS-control and the nested models– the possibility of errors in
price setting makes the adjustment hazard downward sloping. But the downward slope is much
milder than it was for PPS-logit, both because there is less noise in the pricing decision, and
because errors in the timing of adjustment imply that firms do not always respond immediately
when they err in the size of their adjustments. Thus, PPS-control and the nested models are
the specifications that best fit the mildly negative slope of the empirical adjustment hazard.

The shaded blue bars in Figure 6 illustrate Klenow and Kryvstov’s (2008) data on the average
absolute price change as a function of the time since last adjustment. The size of the adjustment
is largely invariant with the age of the current price, with a very slightly positive slope. Under
Woodford’s hazard function, the size of the adjustment is instead strongly increasing with the
time since last adjustment, since an older price is likely to be farther out of line with current
costs. Under the PPS and nested specifications, the size of the adjustment varies less with
the age of the price, although it is initially decreasing (due to the correction of recent large
errors). It is unclear which of our specifications performs best relative to this phenomenon in
the microdata.

29Since consumers are price takers in our model, all management costs in price adjustment related to decision-
making rather than negotiation.

30The “reference” prices and costs reported by Eichenbaum et al. eliminate “sales” and similar phenomena. For
their alternative measure of “weekly” prices and costs; the ratio of standard deviations is 1.08.
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Finally, Figure 7 illustrates the observation of Campbell and Eden (2010) that extreme prices
tend to be young. The shaded blue bars represent their data, after controlling for sales; the figure
shows the fraction of prices that are less than two months old, as a function of the deviation of
the price from the mean price in the product group to which that price belongs. In the Campbell
and Eden data, the fraction of young prices is around 50% for prices that deviate by more than
20% from the mean, whereas the fraction of young prices is only around 35% for a price equal
to the mean. Extreme prices also tend to be young in the PPS and nested models; in these
models extreme prices are likely to result from an extreme productivity draw compounded by
an error, and are therefore unlikely to last long. However, the relation is much too strong under
the PPS specification (with prices that deviate by more than 20% from the mean being around
90% young, and only 10% young prices at the mean). The nested specification shows a U-shaped
relationship that is more quantitatively consistent with the data. In the Woodford specification
the relationship is much flatter, though in that specification too a mild U-shape is observed.

5.4 Results: trend inflation

Next, we consider the macroeconomic implications of each of our specifications concerning the
effects of changes in monetary policy. The first row of Figure 8 shows how the frequency of
price adjustment varies as trend inflation rises from 4% to 63% annually, which is the range of
inflation rates documented by Gagnon (2009) for a Mexican dataset (price adjustment statistics
for 63% annual inflation are also reported in Table 3). Given this increase in the inflation rate,
the frequency of price adjustment in the Mexican data increased by a factor of 1.6.31 In the
Woodford and PPS specifications, the increase in the adjustment frequency is much too high,
ranging from a factor of 2.6 for Woodford-logit to 3.1 for PPS-control. The best performance
comes from the nested specifications, although the change is still excessive: the frequency rises
by a factor of 2.2 in Nested-logit and by 2.3 for Nested-control.

The second row of Figure 8 shows that the standard deviation of price adjustments changes
very little with trend inflation. On this issue, the Woodford specification performs remarkably
well, reproducing the data almost perfectly. Most of the specifications with errors in the size
of price adjustments instead counterfactually show a small increase in this standard deviation
as inflation increases. The exception is PPS-control, where the standard deviation of price
adjustments falls by a factor of 0.74 as inflation increases.32 Overall, though, none of these
model specifications seem stongly inconsistent with the mildly nonmonotonic change in the
standard deviation of price adjustments seen in Gagnon’s data.

In the last row, Fig. 8 shows how the fraction of price increases varies with trend inflation.
All versions of the model except PPS-logit depart from similar fractions of price increases at 4%
inflation. But as inflation rises, the nested models track the proportions of price increases and
decreases much more accurately than the other model versions do. The nested models imply
that even when annual inflation hits 63%, around 7% of price adjustments are still negative. In
contrast, the Woodford and PPS-control specifications tend quickly to a corner solution: the
fraction of price decreases is negligible (0.1% or 1.1%, respectively) when inflation reaches 63%.

31In the figure, the adjustment frequency at the low 4% inflation rate is scaled to 100 in all cases, to better
compare the changes in frequency across specifications.

32This is because the PPS-control specification acts very much like a fixed menu cost model. As we show in
Costain and Nakov (2011A), fixed menu costs imply a strongly bimodal distribution of price adjustments at a
low inflation rate, which collapses to a single-peaked distribution as inflation rises, implying in a large decrease
in the standard deviation of adjustments.
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Finally, since PPS-logit implies much noisier choice than our other specifications, it still displays
more than 20% price decreases at a 63% inflation rate.

5.5 Results: money supply shocks

Finally, we turn to the issue of monetary shocks. To begin with, Figure 9 contrasts our bench-
mark nested model with the Calvo and fixed menu cost models. As Golosov and Lucas (2007)
and other recent papers have made clear, different models of price stickiness have remarkably
different implications for monetary nonneutrality. After an increase in money supply, the Calvo
model implies a small but very persistent rise in inflation; in the FMC model, there is instead
a large inflation spike that is even less persistent than the money growth process itself. The
almost immediate equilibration of prices in the FMC model means that there is only a small
rise in output after the money supply shock, in contrast with the large and persistent output
increase implied by the Calvo model.

Figure 10 instead compares the different versions of our model. Like Fig. 9, it shows the
impulse responses of inflation and consumption to a 1% money growth rate shock with monthly
autocorrelation of 0.8. Somewhat surprisingly, the responses are quite similar across five of our
six specifications, the exception being PPS-control. In the nested and Woodford specifications,
the money supply shock leads to a fairly strong real expansion. Consumption rises by 1.8% on
impact in response to a one percent money growth shock, and converges back to steady state
with a half-life of roughly four months. This is a less persistent response than we reported
for the “smoothly state-dependent pricing” specification of Costain and Nakov (2011B), but is
still a much stronger effect on consumption than Fig. 9 showed for the fixed menu cost model.
If we take the area under the consumption impulse response function as a measure of total
nonneutrality, then the figure shows that our nested model has roughly twice the nonneutrality
of the FMC case, while in turn the Calvo framework doubles the nonneutrality again.

Returning to Figure 10, we see that the Woodford specifications and nested specifications
imply almost identical impulse response functions, both for consumption and inflation. This
suggests that the timing errors in Woodford’s logit are the main factor responsible for the non-
neutrality of the nested model too. Timing errors obviously help cause monetary nonneutrality
since they imply that not all prices adjust immediately in response to a monetary shock. What
is more surprising is that PPS-logit also exhibits a very similar nonneutrality. In this case, the
real effects can be understood in terms of the large pricing errors implied by our estimate of the
model. Given these noisy decisions, firms’ adjustments may be far from optimal responses to the
money supply shock. They may therefore need to readjust; note that Fig. 5 shows an adjustment
hazard of almost 50% immediately after a price change for this specification. Thus firms may
require several attempts before setting a satisfactory price, which slows down adjustment of the
aggregate price level and leads to substantial monetary nonneutrality.

With much lower noise, the PPS-control framework behaves very differently. Errors in price
setting are small, and timing is perfectly rational, so the small decision cost and risk associated
with price adjustment in this specification basically act like a small menu cost. Thus, as we
already saw in Figs. 2-3, the PPS-control model behaves very much like the fixed menu cost
model. This is true of its impulse responses too: a money supply shock causes a strong initial
inflation spike, due to the immediate price changes made by the firms that cross the lower
(S,s) band when the money supply increases. Thus, prices adjust quickly and the response of
consumption is correspondingly reduced, almost to that of the FMC case.
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To see that the initial inflation spike is indeed a “selection effect” in the sense of Golosov and
Lucas (2007), we decompose the inflation response in Fig. 11. To construct the decomposition,

define the conditionally optimal price level p∗kt ≡ argmaxpvt(p, a
k), and also x∗jkt ≡ log(p∗kt /pj),

the desired log price adjustment of a firm at time t with productivity ak and real price pj .
The actual log price adjustment of such a firm (call it i) can thus be decomposed as xit =

x∗jkt + εit, where εit is an error, in logs. We can then write the average desired adjustment as

x∗t =
∑

j,k x
∗jk
t Ψ̃jk

t , and write the fraction of firms adjusting as λt =
∑

j,k λ
jk
t Ψ̃jk

t , and write the

average log error as εt =
∑

j,k,l π
lk
t log(pl/p∗kt )λjk

t Ψ̃jk
t . Then inflation can be written as

Πt =
∑
j,k

x∗jkt λjk
t Ψ̃jk

t + εt. (71)

To a first-order approximation, we can decompose the deviation in inflation at time t as

ΔΠt = λΔx∗t + x∗Δλt +Δ
∑
j,k

xjkt (λjk
t − λt)Ψ̃

jk
t +Δεt, (72)

where terms without time subscripts represent steady states, and Δ represents a change relative
to steady state.33

The “intensive margin”, It ≡ λΔx∗t , is the part of inflation due to changes in the aver-
age desired adjustment, holding fixed the fraction of firms adjusting. The “extensive margin”,
Et ≡ x∗Δλt, is the part due to changes in the fraction adjusting, assuming the average desired
change among those who adjust equals the steady-state average in the whole population. The
“selection effect”, St ≡ Δ

∑
j,k x

jk
t (λjk

t −λt)Ψ̃
jk
t , is the inflation caused by redistributing adjust-

ment opportunities from firms desiring small (or negative) price adjustments to firms desiring
large (positive) adjustments, while fixing the total number adjusting. The last term, Δεt, is
the change in the average log error. Figure 11 reports the inflation decomposition for our six
specifications. We see that indeed, the spike of inflation on impact in PPS-control is a selection
effect. Interestingly, the majority of the inflation response is also attributed to the selection
component in the nested specifications, but this selection effect is more spread out over time.
The intensive margin is much smaller, and the extensive margin and error margins are negligible,
in all the specifications considered.34

In Table 4, we provide an additional assessment of the degree of nonneutrality in our model by
running two calculations from Golosov and Lucas (2007). Assuming for concreteness that money
shocks are the only cause of macroeconomic fluctuations, we calibrate the standard deviation of
the money shock for each specification to perfectly match the standard deviation of quarterly
inflation (one quarter of one percent) in US data. We then check what fraction of the time
variation in US output growth can be explained by those shocks. In the Woodford and nested
specifications, these money shocks would explain around 80% or 90% of the observed variation
in US output growth. In PPS-logit, they would explain 67% of output growth variation, while in
PPS-control they would explain only 38%, consistent with the strong inflation spike and small
output response observed in Fig. 10 for this specification. In the last line of the table, we also
report “Phillips curve” coefficients, that is, estimates from an instrumental variables estimate of

33See Costain and Nakov (2011B) for further discussion of this decomposition.
34Because of the asymmetry of the adjustment process (last panel of Fig. 1), the steady state average log error

ε̄ is nontrivial. But time variation in the average pricing error is negligible.
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the effect of inflation on output, instrumenting inflation by the exogenous money supply process.
The coefficient is more than twice as large for the nested, Woodford, and PPS-logit cases as it
is for PPS-control.

6 Conclusions

This paper has modeled nominal price rigidity as a near-rational phenomenon. Price adjustment
is costly, but the interpretation of the costs is not the usual one: they represent the cost of
decision-making by management.

We operationalize this idea by adopting a common assumption from game theory: a “control
cost” function that depends on the precision of the decision. Following Mattsson and Weibull
(2002), we assume that precision is measured by relative entropy, and then show that decisions
are random variables with logit form. This well-known game-theoretic result is directly applica-
ble to the question of which price to set when the firm has decided to make an adjustment. We
show how to extend this result to model the decision of when to adjust the price. Just as the
cost of the price choice is assumed proportional to relative entropy compared with a uniform
price distribution, the cost of the timing choice is assumed proportional to the relative entropy
of the adjustment hazard, compared with a uniform adjustment hazard. The resulting model
of near rational choice has just two parameters: a noise parameter measuring the accuracy of
decisions, and a rate parameter measuring the speed of decisions.

We shut down the errors on each choice margin– the timing margin and the pricing margin– to
see the role played by each type of error. The model with pricing errors, but perfect adjustment
timing, implies that prices are sticky when they are near the optimum, because of the risk
of choosing a worse price; therefore we call this specification “precautionary price stickiness”
(PPS). This special case has only one free parameter– the degree of noise in the pricing decision.
Our simulations show that noise in the pricing decision helps match a variety of features of
the price adjustment microdata, but with only one free parameter the model cannot in general
match both the typical size of adjustment and its typical frequency. We refer to the model with
errors in timing but perfect pricing decisions as “Woodford’s logit”, because the functional form
for the adjustment hazard is the same weighted logit derived by Woodford (2008) for a rational
inattention model. Both the Woodford specification, and our general nested specification, have
two free parameters: the decision accuracy and the decision rate. But with a few exceptions the
nested specification fits the data far better than the Woodford specification does.

With just two parameters, the nested specification fits well both the timing and size of
price adjustments. As microdata show, both large and small price adjustments coexist in the
distribution. The adjustment hazard is largely flat, with a mild downward slope. Extreme
prices are more likely to have been recently set. Prices are more volatile than costs. The nested
model is well-behaved as inflation rises from 4% to 63% annually, and it performs better than
the PPS or Woodford specifications in describing how the distribution of price adjustments
changes with inflation (in light of the Mexican data of Gagnon, 2009). Both the nested model
and the Woodford model imply a realistic degree of monetary nonneutrality in response to
money growth shocks (though substantially less than a Calvo model with the same average
rate). While this paper has focused on comparing the nested specification with the PPS and
Woodford specifications, we very briefly compare our nested specification to the Calvo model
and the fixed menu cost model to show that it outperforms those models too.
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In recent literature a variety of models have been proposed to explain puzzles from microe-
conomic pricing data; meanwhile, empirical work continues to discover more puzzles. We do
not claim to explain all features of the data, but we find it encouraging that our sparsely pa-
rameterized decision framework works as well as it does, and that it can be incorporated into
a macroeconomic model in a tractable way. While the present paper has focused on price ad-
justment, our framework also seems appropriate for other contexts in which a decision maker
intermittently flips a switch or updates a number or a vector. Interesting potential applications
include wage bargaining, hiring and firing decisions, inventory control, portfolio adjustment
problems, lumpy investment problems, and adjustment of macroeconomic policy instruments.
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Table 1: Adjustment parameters.

Woodford Woodford PPS PPS Nested Nested
logit control logit control logit control

λ̄ 0.044 0.045 – – 0.083 0.22

κπ – – 0.049 0.0044 0.013 0.018

κλ 0.0051 0.0080 – – 0.013 0.018

Table 2: Model-Simulated Statistics and Evidence (1% annual inflation)
Woodford Woodford PPS PPS Nested Nested Data

logit control logit control logit control

Adjustment frequency
Freq. of price changes 10.2 10.2 10.2 10.2 10.2 10.2 10.2

Price change statistics
Mean absolute price change 4.88 4.68 14.0 6.72 8.11 7.51 9.90
Std of price changes 5.51 5.27 17.0 7.32 10.1 9.30 13.2
Kurtosis of price changes 2.24 2.22 2.58 2.37 3.48 3.40 4.81
Percent of price increases 62.7 63.3 55.2 62.3 58.3 58.8 65.1
Percent of changes ≤ 5% 47.9 49.7 16.5 27.9 31.5 33.6 35.4

Variability of prices and costs
Std(ln p)/Std(ln a) 95.2 91.0 113 97.7 109 104 115∗∗

Costs of decisions and errors
Pricing costs∗ 0 0 0 0.174 0 0.509
Timing costs∗ 0 0.167 0 0 0 0.361
Loss relative to full rationality∗ 0.258 0.416 0.665 0.365 0.582 1.41

Note: All statistics refer to regular consumer price changes excluding sales, and are stated in percent.

Quantities with an asterisk are stated as a percentage of monthly average revenues.

Dataset: Dominick’s, except for double asterisk, which indicates Eichenbaum, Jaimovich and Rebelo (2011).
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Table 3: Model-Simulated Statistics and Evidence (63% annual inflation)
Woodford Woodford PPS PPS Nested Nested Data

logit control logit control logit control

Freq. of price changes 29.0 29.6 32.1 35.5 24.2 26.0

Mean absolute price change 14.0 13.7 19.7 11.5 17.9 16.6
Std of price changes 4.87 4.86 20.1 5.26 11.7 10.9
Kurtosis of price changes 3.14 3.12 3.32 6.38 4.64 4.43
Percent of price increases 99.9 99.9 78.5 98.9 93.3 93.1
Percent of changes ≤ 5% 4.4 4.5 11.2 7.71 7.83 8.71
Pricing costs∗ 0 0 0 0.557 0 1.06
Timing costs∗ 0 1.00 0 0 0 0.66
Loss relative to full rationality∗ 0.752 1.65 1.92 1.00 1.72 3.25

Note: All statistics refer to regular consumer price changes excluding sales, and are stated in percent.

Quantities with an asterisk are stated as a percentage of monthly average revenues.

Dataset: Gagnon (2008) Mexican data.

Table 4: Variance decomposition and Phillips curves
Correlated money growth shock Woodford Woodford PPS PPS Nested Nested Data∗

(φz = 0.8) logit control logit control logit control

Freq. of price changes (%) 10.2 10.2 10.2 10.2 10.2 10.2 10.2
Std of money shock (%) 0.16 0.15 0.16 0.12 0.17 0.17

Std of qtrly inflation (%) 0.25 0.25 0.25 0.25 0.25 0.25 0.25
% explained by μ shock alone 100 100 100 100 100 100

Std of qtrly output growth (%) 0.41 0.37 0.34 0.20 0.45 0.43 0.51
% explained by μ shock alone 80 73 67 38 89 84

Slope coeff. of Phillips curve* 0.32 0.29 0.31 0.15 0.38 0.35
R2 of regression 0.96 0.94 0.999 0.85 0.99 0.98

*The “slope coefficients” are 2SLS estimates of the effect of inflation on consumption

First stage: πq
t = α1 + α2μ

q
t + εt; second stage: cqt = β1 + β2π̂

q
t + εt, where the instrument

μq
t is the exogenous growth rate of the money supply and the superscript q indicates quarterly averages.

Dataset: Dominick’s.
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Figure 1: Price change distributions and adjustment function: nested control cost model.
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Figure 2: Distribution of price adjustents: comparing models.
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Comparing histogram of price adjustments across models.

Shaded area: histogram of price adjustments in Dominick’s data.

Solid and dashed lines: histograms of price adjustments in various versions of the model.
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Figure 3: Distribution of price adjustents: comparing models.

−0.5 0 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Size of price changes

D
en

si
ty

PPS

−0.5 0 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Size of price changes

Woodford

−0.5 0 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Size of price changes

Nested

Dominick’s data
Logit versions
Control costs

Notes:
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Solid lines: histograms of price adjustments in logit versions of the model.
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Figure 4: Losses from failure to adjust: nested control cost model.
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Figure 5: Price adjustment hazard: comparing models.
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Adjustment probability as a function of time since last price change.

Shaded area: price adjustment hazard in Dominick’s data.
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Dashed lines: price adjustment hazards in control cost versions of the model.



BANCO DE ESPAÑA 48 DOCUMENTO DE TRABAJO N.º 1301

Figure 6: Mean adjustment and price duration: comparing models.
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Mean absolute size of price adjustment as function of time since last price change.

Shaded area: Klenow-Kryvstov dataset.

Solid lines: logit versions of the model.

Dashed lines: control cost versions of the model.
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Figure 7: Extreme prices tend to be young: comparing models.
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Dashed lines: control cost versions of the model.

Notes:

Fraction of prices set within the last two months, as a function of deviation from average price
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Figure 8: Effects of trend inflation (4.3%, 29%, and 63% annually): comparing models.
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First row: Adjustment frequency as a function of trend inflation rate (normalized to frequency=100

Second row: Standard deviation of price adjustments as a function of trend inflation rate (normalized

annual inflation).at 4.3%

deviation = 100 at 4.3% annual inflation).to standard )

Third row: Price increases as a percentage of price adjustments, as a function of trend inflation rate.

Line with red stars: Gagnon (2009) Mexican dataset.

Solid lines: logit versions of the model.

Dashed lines: control cost versions of the model.
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Figure 9: Impulse responses to money growth shock: comparing models.
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Notes:

Impulse responses of inflation and consumption to money growth shock with autocorrelation 0.8 (monthly).

Top row: logit specifications. Bottom row: control cost specifications.

Green lines with squares: Calvo model. Blue lines with circles: FMC model. Red lines: Nested control costs.
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Figure 10: Impulse responses to money growth shock: comparing models.
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Impulse responses of inflation and consumption to money growth shock with autocorrelation 0.8 (monthly).

Top row: logit specifications. Bottom row: control cost specifications.

Blue lines with circles: PPS versions. Green lines with squares: Woodford versions. Red lines: Nested versions.
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Figure 11: Decomposition of inflation impulse responses: comparing models.
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Decomposition of inflation impulse response to money growth shock with autocorrelation 0.8 (monthly).

Top row: logit specifications. Bottom row: control cost specifications.
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