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1 Introduction

The financial crisis of 2007/8 has highlighted the need for a better understanding of the
interplay between risks in financial markets and economic conditions. Among others,
Christiansen et al. (2012), Paye (2012), Engle et al. (2013) and Conrad and Loch (2015a)
provide recent evidence for the counter-cyclical behavior of financial volatility.! In par-
ticular, Conrad and Loch (2015a) show that changes in the secular component of stock
market volatility can be anticipated from variables such as the term spread, housing starts
or survey expectations on future industrial production. While Christiansen et al. (2012)
and Paye (2012) employ predictive regressions, Engle et al. (2013) and Conrad and Loch
(2015a) base their empirical analysis on a multiplicative two-component GARCH model.
In this model a short-term unit variance GARCH component fluctuates around a smooth
long-term component that is driven by macroeconomic conditions.

The findings in Engle et al. (2013) and Conrad and Loch (2015a) suggest that one-
component GARCH models are misspecified in the sense that they omit a multiplicative
component that is driven by an explanatory variable. However, standard procedures for
misspecification testing in GARCH models do not cover the case of explanatory variables
(see, e.g., Bollerslev, 1986, Lundbergh and Terésvirta, 2002, or Halunga and Orme, 2009).
As most of them also require additive separability of the additional component under the
alternative, their adaption to a general multiplicative two-component structure is not
straightforward.?

For this reason, we develop a new misspecification test for the simple GARCH model.
While under the null hypothesis the true model is a GARCH(1,1), under the alternative
there is a second multiplicative component. We propose a Lagrange Multiplier (LAM)
statistic which is based on the parameter estimates under the null and checks for a po-
tentially omitted long-term component. For our LM test statistic, we provide a detailed
derivation of the asymptotic properties. The arguments in the derivation rely on the
results for the quasi-maximum likelihood estimator (QMLE) for pure GARCH models in
Francq and Zakoian (2004). The structure of the proof builds on the arguments used in

the proof of Theorem 2 in Halunga and Orme (2009), who consider general misspecifica-

!Their findings complement and extend the earlier work of Officer (1973) and Schwert (1989).
2For recent results on properties and estimation of GARCH models with explanatory variables that

enter in an additive fashion see Han and Kristensen (2014), Han (2015) and Francq and Thieu (2015).



tion tests for GARCH models. The important difference between our test and theirs is
that we consider a situation in which the second component is driven by an explanatory
variable that may or may not be generated outside the model. In addition, Halunga and
Orme (2009) consider additive components only and focus on estimation effects from the
correct specification of the conditional mean. In our set-up, the volatility components
are multiplicative, causing substantial differences in the likelihood and test statistic. For
simplicity, we assume that returns have mean zero, thus abstracting from estimation ef-
fects from the mean. In order to derive the asymptotic distribution of the test statistic,
we require the standard assumptions on the GARCH parameters and the innovation term
for the pure GARCH model. In addition, our test needs assumptions on the moments of
the explanatory variable as well as on the observed (return) process. A nice property of
our LM test is that it will not depend on the functional form of the long-term component
under the alternative. Further, the test statistic is x? distributed independent of whether
the alternative hypothesis is two- or one-sided. This feature of the LM test has been
discussed in Francq and Zakoian (2009) and does not hold for Wald and Likelihood ratio
tests which require estimation of a restricted model under the alternative. In a Monte-
Carlo simulation, we find good size and power properties in finite samples. Moreover, we
illustrate the usefulness of our procedure by two empirical applications to S&P 500 return
data.

The model under the alternative hypothesis is closely related to the GARCH-MIDAS
of Engle et al. (2013). Although this model is frequently used in empirical applications
(see, e.g., Asgharian et al., 2013, Conrad and Loch, 2015a, 2015b, Dorion, 2016, Opschoor
et al., 2014), there exists no asymptotic theory for the QMLE yet. Therefore, Wald-type
tests like simple t- or F-tests are not straightforward to employ in this context. The most
recent theoretical results by Wang and Ghysels (2015) are specific to linear long-term
components that are driven by realized volatility and only hold in a restrictive parameter
space which does not admit our null hypothesis. We illustrate how our test can be applied
even in settings with mixed-frequency data and, thus, can be used as a preliminary check
before estimating a GARCH-MIDAS model.

Our test statistic is also linked to the ‘ARCH nested in GARCH’ test for evaluating
GARCH models as proposed by Lundbergh and Terédsvirta (2002). Although it is impor-
tant to point out that the test by Lundbergh and Terésvirta (2002) should be considered



as a general misspecification test without a well-specified alternative, it is possible to think
of their ‘nested ARCH component’ as our long-term component with a specific choice for
the explanatory variable. Despite this analogy, the specification of their short-term com-
ponent is fundamentally different from ours. Under the alternative, in their short-term
component the squared observations are not divided by the long-term component, which
implies that the short-term component is not a GARCH process and, thereby, leads to a
different test indicator. In the Monte-Carlo simulation, we show that even if we modify
their test in order to allow for a general explanatory variable, the difference in the specifi-
cation of their short-term component leads to a considerable loss in power in comparison
to our test statistic.

Finally, our work complements recent research on misspecification testing in mul-
tiplicative component models of the smooth transition type by Amado and Terdsvirta
(2015), in the Realized GARCH model by Lee and Halunga (2015) and on the estimation
of semiparametric multiplicative component models by Han and Kristensen (2015).

The plan of the paper is as follows. In Section 2, the two-component GARCH model
is introduced and the LM test statistic is derived. This section also contains the main
asymptotic results. Section 3 provides some finite sample evidence in a Monte-Carlo
study. In Section 4, we illustrate how the test can contribute to modeling S&P 500 return

data. Section 5 concludes. All proofs are contained in Appendix A.

2 Model and Test Statistic

In Section 2.1, we first introduce the multiplicative two-component GARCH specification
and then discuss the null hypothesis of our test. The relationship between the two-
component model and the GARCH-MIDAS specification is explored in Section 2.2. We
derive the likelihood function and the test indicator in Section 2.3 and present our main
result on the asymptotic distribution of the test statistic in Section 2.4. Section 2.5
provides a comparison with the ‘ARCH nested in GARCH’ test and Section 2.6 covers

the mixed-frequency case.



2.1 The Two-Component GARCH Model

We define the log-returns as given by
& = oo, (1)

where Z; is independent and identically distributed (i.i.d.) with mean zero and variance

3 o2, is measurable with respect to the information set F;_; and denotes the

equal to one.
conditional variance of the returns. We consider the following multiplicative decomposi-
tion of o3, into a GARCH component (‘short-term component’) and a component that is

driven by an explanatory variable:
o5 = hoyTor (2)

Follow the terminology used in Engle et al. (2013), we refer to the second component as a
‘long-term component’. This is, because in our setting the second component is typically
much smoother than the GARCH component.

The short-term component is specified as a mean-reverting GARCH(1,1):

2
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hg? = Wy + (%)) ! -+ 50 83—1 (3)
To,t—1

with o+ 5, < 1. We denote the vector of true parameters in the GARCH component as
Ny = (wo, @, BO),'

The 7o, component is assumed to depend on the K lagged values of an explanatory
variable x;. It can be thought of as describing smooth movements in the conditional

variance as a function of the weighted sum of the lagged values of the explanatory variable:

Toe = f(moxe) (4)

where 7y = (mo1,...,Tox) and x; = (24_1,...,2—k)". We make the following assump-

tions on the parameter space IT and the function f(-).

Assumption 1. The parameter space I1 is a compact subset of R and m, lies in the

interior of I1.

Assumption 2. Let f be a known positive function, i.e. f(-) > 0, continuously differen-

tiable, with f(0) =1, f} = 22| r—o # 0.

o/ x¢

3Throughout the paper we assume that the conditional mean of the returns is zero. For GARCH

misspecification testing in the presence of a non-zero conditional mean see Halunga and Orme (2009).



The assumption that f(-) > 0 allows to consider explanatory variables that take
positive as well as negative values. Further, we do not have to require that the m are
all positive. That is, in our model the explanatory variable x; can have a positive as well
as a negative effect on the volatility. The main example that we have in mind for f(-) is
the exponential specification

f(moxe) = exp(moxy). (5)
This model has been used, among others, in Engle et al. (2013), Opschoor et al. (2014)
and Conrad and Loch (2015a). While Engle et al. (2013) and Conrad and Loch (2015a)
used realized volatility as an explanatory variable, Opschoor et al. (2014) opted for the
Bloomberg Financial Conditions Index.

Using the above notation, we are interested in testing Hy : o = 0 against the two-
sided alternative Hy : wg # 0. Under Hj, the long-term component is equal one and the
two component model reduces to the nested GARCH(1,1) with unconditional variance
op = wo/(1 —ag— By)."

Note that equation (3) is specified such that it can be rewritten as an ARCH(o0)

,8;) — W0+(QOZE_1+60 Ot 1= Zﬂo <w0+a070 ~ )
t—1—1

which means that ,//To; = \/hS Z; follows a GARCH(1,1) both under the null and under
the alternative. We make the following assumptions about the GARCH parameters and

the innovation Z;.

Assumption 3. n, € O where the parameter space is given by © = {n = (v, o, ) €
R0 <w<w,0<a,0<fB,a+B<1}.

Assumption 4. We denote by F,_1 the o-field generated by {(es,x5);s < t}. As defined
in equation (1), let Zy be i.i.d. with B[Z,|F;_1] = 0, E[Z}|F;_1] = 1 and E[Z} | Fi_1] = Kz,

where Kz is a finite constant. Further, Z? has a nondegenerate distribution.

Assumptions 3 and 4 imply that \/hgZ; is a covariance-stationary process with un-
conditional variance o3. Furthermore, by Jensen’s inequality they imply that E[ln(agZ? +

Bo)] < 0 which ensures that under the null ¢; is strictly stationary and ergodic (see, e.g.,

4Later on, we also consider the one-sided alternative H; : g # 0, 79 > 0 (latter elementwise). See

Remark 3 in Section 2.4.



Francq and Zakoian, 2004). Finally, the assumption on the existence of a fourth-order

moment of 7, is necessary to ensure that the variance of the score vector exists.

2.2 Relation to GARCH-MIDAS Model

The two-component model presented in the previous section is closely related to the
GARCH-MIDAS model suggested in Engle et al. (2013). In their model, the long-term
component is typically of the exponential form and the weights in the long-term compo-
nent are parsimoniously parameterized as m, = 7T, Where the 1y, >0, k=1,..., K,
are typically generated from a Beta weighting scheme. The parameter 7y then determines
the sign of the effect of z; on long-term volatility. Alternatively, Engle et al. (2013) con-
sider a linear long-term component. However, the linear specification of f(-) can only be
used in combination with non-negative explanatory variables and requires 79 > 0. For
this model, Wang and Ghysels (2015) use a rolling window realized variance of the last N
days as the explanatory variable, provide conditions for the strict stationarity of ¢, and
establish consistency and asymptotic normality of the QMLE. However, the proof of the
asymptotic normality of the QMLE crucially relies on the assumption that 7y > 0 and
Yo > 0 for k =1,..., K and, hence, their framework does not directly allow to test the
null that the lagged z; are jointly insignificant (see Assumption 4.3 in Wang and Ghysels,
2015).

Most importantly, the GARCH-MIDAS specification allows for the possibility that the
explanatory variable is observed at a lower frequency, say monthly or quarterly, than the
daily returns. In this case, the long-term component varies at the lower-frequency only.
Although the mixed-frequency version of the GARCH-MIDAS is highly relevant from an
empirical perspective, there is no asymptotic theory for the general model yet. However,
in Section 2.6 we show that it is straightforward to extend our LM test statistic to the

mixed-frequency situation.

2.3 Likelihood Function and Partial Derivatives

We denote the processes that can be constructed from the parameter vectors n = (w, «, 5)’
and m = (m,...,Tg) given initial observations for ¢, and x, by h, and 7,. It is im-

portant to distinguish between the observed quasi-likelihood which is based on h; =



Z;;B B (w + aetz_l_j /Ti-1-j) + B'ho and the unobserved quasi-likelihood function based
on h® = Z;‘;O B (w + aef_l_j /7i—1-j) which depends on the infinite history of all past

observations. The unobserved Gaussian quasi-log-likelihood function can be written as

Ly (n, mler, xr, 601, 07-1,...) = Zlf" (6)

with

oo _1 7,00 8?
I° = In(h{®) + In(7¢) + = . (7)
2 hfoTt

Similarly, conditional on initial values (g9, hg = 0,Xg) the observed quasi-log-likelihood

can be written as

LT("?77T‘6T7$T76T—17IT—17‘“7617x1> = th (8)
with
1 _ e
lt = —= ll'l(ht) + ln(Tt) +=—1. (9)
2 htTt

2.3.1 First derivatives

In the following, we consider the unobserved log-likelihood function. We define the average

score vector evaluated under the null and at the true GARCH parameters as

D2 (n,) 1 d dy,(mo)
D>(ny) = ! di®(my) " )
D (n,) Z ; d:t(no)
where dp?,(n,) = 9I;°/ 877}770,#20 and dy°;(ny) = 9l7°/ 877} . Next, we derive explicit

expressions for dp°,(ny) and d37,(n,). First, consider the partlal derivative of the log-
likelihood with respect to n:

ol 1[ &2 1 oh>® 107,
- | — 1! [ = 10
on 2 [hi"’n } (hi"’ on | mom (10)

with 01, /0n = (0f;/07'x:)(0%x;/0n) 7. Under the null hypothesis, the long-term com-

ponent reduces to unity and the short term component simplifies to h® = h®|—o =

w+ ag? | + Bh°,. Note that h¥® corresponds to the standard expression of the condi-

tional variance in a GARCH(1,1). We then distinguish between

ol 1] e;

— = — 1|y~ 11
~5 |1 (1)

=0
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with B
o L Ohy

1 - % 00
= p Zﬁ Si—i» (12)
t =0

=0
where s2° = (1,2 |, h$°,)’, and the corresponding quantity which is evaluated at n,:

d°‘°(77)=l E—g—ly“’ (13)
’I’],t 0 2 h&% 0,t7

with hgS = wo + pe? | + BohiG_y and y§5 = (hgf’t)‘l Yoo ﬁgsgf;_i.
The partial derivative with respect to 7 leads to:

oz 1[ g2 _1}<18h§°+1%) (14)

or 2 | T, e om T Om

whereby the partial derivative of h2® is given by

oo 00 9
8ht _ —aZﬁj Et2—1—j 87—15_1_]" (15)
j=0

or Tiq; Om

Since O7;/0m = (Of /O7'%x,) (%, + (0% /Om) 7), we have O7;/0T|r—0 = fi%; and, hence,
o

dfro,t("?) ~ on

1[ée?
= | _1|r> 1
2[@0 ]rt 1o

=0
with

I &
rtoo = .fol <Xt - ah,T.o Zﬂjef_l_jxt_l_j> . (17)
-

Similarly as before, the corresponding expression evaluated at n, is given by:

ax,my) = L[ 1] (18)
mt\T) = 2 | hes Lot

with
1 & .
s = fo (Xt — Qg Zﬁéatz_l_jxt_l_j) . (19)

In summary, we have

Do(n) — 1 T ey L £} Yod 20
(%)—TZ ¢ (no) ﬁz B - (20)
t=1 t=1 L0t Tot



Using that under Hy: E[e}/h¢] = E[Z7] = 1, it follows that E[d*(n,)|F;-1] = 0 and

Q
Varld®(my)l =& = |

Elyss(v62)] Elyss(rss)]

1
- (21)
4 Elrg(yee)] E[rg(rgs)]

In the proof of Theorem 1 we will show that €2 is finite and positive definite. This will allow

us to apply a central limit theorem for martingale difference sequences to % Zthl ds (n,).

2.3.2 Second derivatives

In the subsequent analysis we also make use of the following second derivatives:

) Loy g [ -1 25 22)
and
8‘16777@7) _ _%%myw e {;%.o - 1} %: (23)
We then define e -
and A e -
Jon = B[ ZE ] mpv) 25)

Note that dp?,(n,) corresponds to the score of observation ¢ in a standard GARCH(1,1)
model and 9dy’,(n,)/0n’ to the respective second derivative. Under Assumptions 3 and 4,
it then directly follows from the results for the pure GARCH model in Francq and Zakoian
(2004) that J,,, is finite and positive definite. Finally, note that Qy, = 2(kz — 1)J,y,
and O, = %(mz — 1)Jxy. If Z; is normally distributed (i.e. the quasi-log-likelihood is

correctly specified), then k; = 3 and Q,,,, = J,,, and Qy,, = J 1y, respectively.

10



2.4 The LM Test Statistic

The LM test statistic will be based on the observed quantity D, (7)) = %23:1 d:(7),
where 7) is the QMLE of 1, estimated under the null. We derive the asymptotic dis-
tribution of the test statistic in three steps. In the first step, we derive the asymptotic
normality of the average score evaluated at n,. We then show that the lower part of the
score evaluated at the QMLE can be related to the average score evaluated at 1, in the
following way:

VIDZ () = [Jand sy = IVTD> (1) + 0p(1) (26)

In the final step it is necessary to show that the observed quantity v/7'D, (7)) has the same
asymptotic distribution as vTD (7). The LM statistic follows the usual y? distribution.

Since the test statistic is based on the QMLE of 7n,, we can rely on the following
result from Francq and Zakotan (2004). If Assumptions 3 and 4 hold and the model is
estimated under the null, the QMLE of the GARCH(1,1) parameters will be consistent

and asymptotically normal:
o d 00 (,00\/1\—
VT (7 —ny) == N(0, (57 — D(E[yg3(y5)D ™) (27)

Remark 1. In principle, we can relax the assumption that Z; is i.i.d. Following Fscan-
ciano (2009) and Francg and Thieu (2015), the asymptotic normality of the QMLE can be
also obtained under the weaker assumption that Z; is strictly stationary and ergodic with
E[Z)|Fi_1] = 0 and E[Z}|Fi_1] = 1. This allows for a time-varying conditional kurtosis
of Zy. Under this weaker assumption the asymtotic distribution of the QMLE is given by

VI(7—ng) ~5 N(0, 3,12, 1), (28)

where Qpy = B[(B[Z}F_1] — Dye3(yv63)]- Clearly, if B[Z}|F,_1] is constant, (28) sim-
plifies to (27).

In the following theorem, we derive the asymptotic distribution of the average score
evaluated at m,. In order to ensure the finiteness of the covariance matrix of the average
score, we assume that z; has a finite fourth moment. Additionally, we require that the
long-term component is minimal in the sense that no equivalent representation which is

of lower order exists.

11



Assumption 5. x; is strictly stationary and ergodic with E[|z|*] < oco. There exist no
ai,...,ag for the long-term component (4) such that 25:1 TokTi—k = Zle sTi—s With

S < K.

By Assumption 4, the explanatory variable x; is assumed to be weakly exogenous,
i.e. E[Z)|x;] = 0. This allows for explanatory variables from ‘outside the model’, but
also covers the case that x; is ‘generated within the model’. In the empirical literature a
variety of explanatory variables from outside the model — such as GDP growth, the term
spread, the unemployment rate or disagreement among forecasters — has been used (see
Engle et al., 2013, or Conrad and Loch, 2015a). Wang and Ghysels (2015) show that the
GARCH-MIDAS model with rolling window realized volatility as explanatory variable can
be rewritten such that z; = €2, while the specification of Lundbergh and Terésvirta (2002)
selects x; = €2 /hg, which is generated inside the model (see Section 2.5). For testing the
simple GARCH model against the former model, Assumption 5 requires that under the
null the observed process has a finite eighth moment: E[|g;|®] < co. The corresponding
constraints on the parameters of the GARCH(1,1) are provided in Francq and Zakoian
(2010), equation (2.54).

Theorem 1. If Assumptions 3-5 hold, then
VTD>(n,) —% N(0, ). (29)

In the proof we use the fact that €2,, is finite and positive definite which follows from
Theorem 2.2 in Francq and Zakoian (2004).

Next, we consider the asymptotic distribution of the relevant lower part of the score
vector evaluated at 7). As an intermediate step, we show that J,, can be consistently

estimated by
8d°°

t=1
where 7 = my 4+ op(1). The result is presented in Proposition 1 in Appendix A. This

requires the following Assumption 6 which ensures that Jr,(n) is finite with a uniform

bound for all n € ©.

Assumption 6. E[|,|*0+%)] < 0o for some s € (0,1).

12



Note that in general &7 = h§§7o,Z7 depends on 1, and 7y. Under the null, 7 = h§5, 2}
depends on m, only. In the proof of Proposition 1 we will use this observation to argue

that E[sup, |e,|**T9)] = E[[e,|[**+)].
Theorem 2. If Assumptions 3-6 hold, then
VIDZ(7) -4 N(0,3), (30)
with
Y = Qup—Jpy 2

nm--oTn

= - 1) (B 05 - BIa s (Blyssv)]) " Blyiss]) . (31)

The actual test statistic will be based on the observed quantity D, (7). The following

theorem states the test statistic and its asymptotic distribution.

Theorem 3. If Assumptions 3-6 hold, then

LM = TD.(7)E 'DL(7)
1 T ore2 / A
- Ll | B [A—t—}f« KRV10¢ 392
M;[m }) (zh Neew @

where n = (W, &, B)’ s the vector of parameter estimates from the model under the null,

7 ~ A oh) N ~ 7 —1 3
ht =w+ Oé€t2_1 + ﬁh’t—l; ry = fO,(Xt — Oé/ht Z;:OB 8%_1_]-Xt_1_j) and

R T T T -7
S = Sz —1) [ Dowd - }jt;<§jm%> > i, (33)

=1 =1
with (kz — 1) =1/T . (€2/hy — 1)% is a consistent estimator of 3.

Note that the LM test statistic does not depend on the constant f] because the (f})?

in the ‘numerator’ and the ‘denominator’ of the test statistic cancels out.

Remark 2. The covariance matriz S in Theorem 3 takes the same form as in Lundbergh
and Terdsvirta (2002). The fact that we can factor out the term (/*;\—1) follows from the
assumption that Z; is i.i.d. A modified version of the test statistic can be obtained under
the weaker assumption discussed in Remark 1. However, this would require to further

strengthen the assumptions on x; and &;.

13



Essentially, the test statistic checks for a correlation between the squared standardized
residuals from the model estimated under the null and the elements of the K-dimensional
vector ;. In empirical applications, the true lag length is unknown. Although the LM
statistic can be easily computed for a variety of K'’s, our simulation experiments have
shown that for monotonically decaying weights, 7, choosing K = 1 is sufficient in order
to detect whether x; has an effect on long-term volatility or not. Given that in applications
the explanatory variable is likely to be persistent, this result is not surprising because for
persistent x; all entries of r; will basically carry the same information so that choosing
K =1 is sufficient.?

Moreover, it is straightforward to construct a regression version of our test (see also

Lundbergh and Terésvirta, 2002). The corresponding test statistic is given by

SSRy— SSR,
SSRy

LM =T , (34)

where SSRy = 3.1, (e2/ hy —1)% and SSR; is the sum of squared residuals from a re-
gression of (¢2/ hy — 1) on 1} and y;, where y; is obtained by inserting the respective
estimated quantities in equation (12). Hence, LM is simply T times the uncentered R?

of the regression.

Remark 3. Wang and Ghysels (2015) consider a specification for f(-) which is linear in

the lagged explanatory variable. In this case the long-term component is specified as
f(m'x) =1+ 7w'x, (35)

which again ensures that f(0) = 1. However, this specification requires w > 0 as well as
non-negative explanatory variables, i.e. x; > 0 almost surely, in order to ensure the pos-
ity of the conditional variance. Although the alternative hypothesis becomes one-sided
in this case, i.e. is given by Hy : 7wy # 0, 7y > 0, this does not affect the asymptotic
distribution of our test statistic which is still x*(K). This result directly follows from the
discussion in Francq and Zakoian (2009) who consider testing the nullity of coefficients
in GARCH processes. While the asymptotic distribution of the Lagrange multiplier test
remains the same (because the score vector is asymptotically Gaussian under the null),
Francq and Zakoian (2009) show that the asymptotic distribution of the Wald and Like-
lihood ratio test would no longer be x? since the asymptotic distribution of the QMLE of

°In the extreme case that z; is constant, &; collapses to a vector of zeros.

14



the unrestricted model is non-standard under the null hypothesis. However, as suggested
by Demos and Sentana (1998) it may be possible to construct a one-sided version of our

LM test that would be more powerful.

Remark 4. In principle, we could also use our test for testing the joint significance of
several explanatory variables. In this case x; would not include the lagged values of x;
but different explanatory variables, say, x; = (vi_1, w1, ...) and K would represent the

number of different explanatory variables.

Finally, it is interesting to consider two special cases that are nested within our frame-
work when there are no GARCH effects, i.e. when ag = 8, = 0 and hZ = wy. In this case,
the model under H, has constant conditional and unconditional variance equal to ag = wp.
Under the alterative, the conditional variance is given by Var|e;|F;_;] = o27,. Without

GARCH effects and under H,, the average score in equation (20) can be rewritten as

D) = 57 | 1) . (36)

2r =1 L70 foxi
Then, the regression-based test simplifies to regressing the squared returns on a constant
and x; and to computing T'R? which resembles the Godfrey (1978) test for multiplicative
heteroskedasticity. Finally, the Engle (1982) test for ARCH effects is obtained if we choose

2
xt_k — gt—k'

2.5 Relation to LM test of Lundbergh and Terasvirta (2002)

Next, we compare our test statistic to the Lundbergh and Terdsvirta (2002) test for
misspecification in GARCH models. Their test is based on the following specification
g = \/@gm = \/m&, where h(? is defined as before and 7o; = 1 + @'xy, i.e. they
assume that the long-term component is linear. Lundbergh and Terédsvirta (2002) make
the specific choice of z, = &, = €2/hg for the explanatory variable in the long-term
component. Because under this assumption &y, = /7¢:Z; follows an ARCH(K'), Lund-
bergh and Terdsvirta (2002) refer to this specification as ‘ARCH nested in GARCH’
and test the null hypothesis Hy : w9 = 0. Although the ‘ARCH nested in GARCH’
is remarkably similar to our model, there is an important conceptual difference. Since

the short-term component is based on A (instead of hSY), the squared observation €2
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is not divided by 7o;—;. Because of this, \/h$Z; follows a GARCH(1,1) process un-
der the null but not under the alternative.® Moreover, it follows that Oh$®/0m = 0

and, hence, in the Lundbergh and Terdsvirta (2002) setting equation (19) reduces to

3 = (e71/hGS 1,679/ hG—as - - - €1k /hG_k)'- Thus, their LM test statistic is based
on
& “LT
~ — ry, (37)
hy
where hy = & + ae? |+ Bizt_l and 17 has entries 5f_k/ﬁt_k, k=1,..., K. Intuitively,

equation (37) is used to test whether the squared standardized returns are still correlated.
In this sense, the test is intended to be a very general misspecification test with omitted
ARCH under the alternative (instead of a well-specified alternative).

In the Section 3, we will compare the ‘ARCH nested in GARCH’ test of Lundbergh
and Terdsvirta (2002) to our new test in situations in which the true data generating
process (DGP) has a two-component structure. We implement a regression-based version
of the test as in equation (34) but with #27 instead of t;. We denote the test statistic
by LMpr. In addition, we consider a modified version of the Lundbergh and Terasvirta

(2002) test, in which we allow for a general regressor z;. In this case, equation (19) is
~ LT ,mod

simply given by rg, = x; = 1, . We denote the corresponding test statistic LM 7 mod-
. . . LT,mod N t—1 pJ
Since t;, — ;" = &/hy ijoﬁ Ef_l_jxt_l_j, our new test, LM, and LM 1,04 can

be expected to perform similarly if, for example, & is small. On the other hand, we
expect that our test will have better power properties than the modified Lundbergh and
Terisvirta (2002) test when the ARCH effect is strong.”

2.6 Mixed-Data Sampling

As discussed in Section 2.2, the two-component model is often applied in settings where
the explanatory variable is observed at a lower frequency than the daily returns. In order

to capture such a setting we have to slightly adapt our notation. As before, we denote

6The observation that A does not follow a GARCH process under the alternative is closely related
to the argument in Halunga and Orme (2009) that the alternative models considered in Lundbergh and

Terésvirta (2002) are not “recursive” in nature.
"Amado and Terisvirta (2015) discuss testing the null of no remaining ARCH effects in multiplicative

time-varying GARCH models. Our test is closely related to the model they discuss in Section 4.4 of their

paper. However, they provide no asymptotic theory for the test with exogenous explanatory variables.
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by z; the explanatory variable, but now t refers to, for example, a monthly or quarterly
frequency. We denote the daily returns by ¢;,, where ¢« = 1, ..., M refers to the M days

within each month/quarter.® Equation (1) can then be rewritten as

Cit = 1/ Bg‘fi,ﬂo,tzi,u (38)

whereby Assumption 4 now holds for Z;, with F;, defined accordingly. Note that the
long-term component has an index t only, since it is constant within each month/quarter.
On the other hand, the GARCH component varies at the daily frequency. We propose
two versions of the test for the mixed-frequency case:

Alternative 1: Since 7¢, varies at the lower frequency only, we calculate the volatil-
ity adjusted low-frequency returns &; from the ‘deGARCHed’ high-frequency returns as

follows:

M
- €i
& = Z :t = \/Toﬂth, (39)

where 7, = Zf\il Z;y is i.i.d. with mean zero and variance M by Assumption 4. This

leads to the score vector:

r =2 ML
5
am) =3 (5 -1) (40)
t=1 Joxe
Thus, if & were observable, we could implement the test by simply regressing &2 on
a constant and x;. Again, this would be a test for heteroscedasticity in the spirit of
Godfrey (1978). To actually implement the test, we need to replace the unobservable &,
by
~ M £
E=Y (41)
i=1 \/hiy
where the ili,t are obtained by estimating the GARCH model under the null for the daily

data. However, a simple Taylor expansion shows that &, has measurement error due to

8For simplicity in the notation, we assume that each month/quarter has the same number of (trading)

days.
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— E v 1— +0p(ﬁ) ~ & + Wi,

where W, is mean zero but has non-zero variance. Higher-order terms are negligible for
the test performance. Thus, tests based on the critical values from the y2-distribution
(derived in Theorem 3) will be undersized (see also Li and Mak, 1994). However, it is
straightforward to simulate the correct distribution of the test statistic based on &,.
Alternative 2: The second alternative is based on what we call the volatility-adjusted
realized variance which we define as the monthly/quarterly realized variance of the de-
GARCHed daily returns. As we will discuss below, this approach is closely related to the
empirical literature on predictive regressions for financial volatility. Consider again the

deGARCHed daily returns, but now sum the squares:

M 82 M

D/ th B 2 S ~

th = E Too | To,t Zi,t = TO,tZta (42)
i=1 "0t i=1

where ET@ denotes the monthly /quarterly realized variance of the deGARCHed returns.
To simplify the analysis further, we assume that the long-term component is given by
To+ = exp(mx;). This Assumption is plausible since it is the most common specification
of 7o, in the empirical literature. It is then natural to consider the log of equation (42)

as a regression model:
ln(f?\\//t) = x4+ In(Z) =é+mx +(,, (43)

where ¢ = E[In(Z,)] and {, = In(Z,) — ¢ Note that by Assumption 4 the innovation ¢, is
i.i.d. This is, under Hy : 7 = 0 the volatility-adjusted realized variance In(RV,) should
be unpredictable. Of course, we have to replace ﬁ?t in equation (43) with the estimate
?‘7 ¢ = Zf‘il €74/ he° in order to obtain an estimable version. Again, this will introduce

measurement error.
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Equation (43) is very much in analogy to the predictive regression model often used
when analyzing the link between financial volatility and macro conditions (see Paye, 2012,
Christiansen et al, 2012, Conrad and Loch, 2015a, and others). The important difference
is that predictive regressions directly try to explain the realized variance, i.e. are based

on regressions of the following type:
In(RV;) = c+ 7x + ¢, (44)

where RV, = "M, e?,. From equation (38) it follows that the innovation in equation (44)
is given by ¢, = n(3X1, b, Z2,) — E[ln(X1, b, Z2,)]. Note that ¢, is a low-frequency
process that corresponds to the sum of a squared high-frequency GARCH process. That is,
while 615 is i.i.d., we can expect that ¢, has a higher variance and is strongly autocorrelated.
This intuition is in line with the fact that In(RV}) is typically found to be highly persistent.
These considerations suggest that the relationship between x; and financial volatility is
more difficult to detect when using equation (44) rather than equation (43) as a regression
model.

Finally, note that in predictive regressions typically also the lagged realized variance

is included as an additional explanatory variable. This leads to the regression
In(RV;) = c+ wx; + pIn(RVi_1) + ;. (45)

Since the additional regressor In(RV;_;) provides a parsimonious (but noisy) summary of
the information included in x;_; and requires to estimate only one additional parameter,
it will reduce the relevance of including the whole x; vector in the regression. This might
explain, why in the predictive regressions literature x; is often found to be insignificant
once the lagged realized volatility is controlled for. The point that predictive regressions
like in equation (45) might be problematic has been made already by Engle et al. (2013)
who argue that In(RV;_1) is a noisy measure of the true unobservable long-term component
which creates problems due to measurement error on both the left as well as the right

hand sight of the equation.

3 Simulation

In this section, we examine the finite sample behavior of the proposed test in a Monte-

Carlo experiment. We simulate return series with 7" = 1000 observations and use M =
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1000 Monte-Carlo replications. The innovation Z; is assumed to be either standard nor-
mally distributed or (standardized) t-distributed with seven degrees of freedom. In order
to consider a realistic example under the alternative, we will base the long-term compo-
nent on actual data. As an explanatory variable, we use the squared daily VIX index,
VIX,, for the period October 2010 to October 2014.° The sample is chosen such that
T = 1000. In addition, we construct monthly and quarterly rolling window versions of
the squared VIX as VIXV) = + Zj.vz_ol VIX; j, with N = 22 and N = 65. Figure 1
shows the evolution of the VIX and its rolling window versions over the sample period.
The spikes in the third quarter of 2011 correspond to the financial turmoil during the

European sovereign debt crisis.

— VIX
6 — VIXROLLING22
— VIXROLLING65

Figure 1: The figure shows the evolution of VIX; (blue), VX (red) and VI X%
(green) for the period October 2010 to October 2014. The three variables are presented

in daily units.

3.1 Size properties

We first discuss the size properties of the different versions of the test statistic. Three
alternative GARCH(1,1) specifications are considered. These three specifications reflect
different degrees of persistence (Low: L, Moderate: M, High: H) in the conditional

variance, whereby we measure persistence by ag + 5,. We keep f, fixed at 0.9 and

9More specifically, we define VIX; as 1/365 times the squared VIX index so that the squared annu-

alized observations are transformed to daily units.
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increase ag from 0.05 to 0.09. wy is always chosen such that under the null o3 = 1.

2
L By = 0.05+0.05—1 1+ 0.90h0,,
To,t—1
_ 2| _
M:  he = 0.03+0.07 +0.90hg 1
To,t—1
_ 52 _
H:  hy = 0.01+0.09—" 4 0.90ho,
To,t—1

Table 1: Empirical size.

Zy ~N(0,1) Zy ~ t(7)
L M H L M H
Panel A: z; = &2 /h,
1% | 09 12 13|07 09 07
LM 5% | 46 5.0 52 | 31 37 39
10% | 90 97 101| 72 74 73
1% 0.9 1.2 1.3 0.9 1.1 1.1
LMpr 5% | 52 52 51 | 34 38 3.9
10% | 10.2 10.0 106 | 6.7 7.1 7.4
Panel B: z; = VIX;
1% | 1.9 22 1.7 ] 23 26 24
LM 5% | 6.4 6.0 57 | 60 61 55
10% | 11.2 114 11.6 | 11.4 11.0 9.5
1% | 20 21 23| 11 12 19
LMirmea 5% | 70 71 79 | 55 64 71
10% | 12.2 12.8 138 | 11.3 12.0 12.6

Notes: Entries are rejection rates in percent over the 1000 replications

at the 1%, 5% and 10% nominal level. The model for the conditional
variance is a GARCH(1,1) with 8, = 0.90. L, I and H refer to GARCH

models with low (o = 0.05), moderate (o« = 0.07) and high (o = 0.09)

persistence. w is chosen such that o3 = 1. All test statistics are based

on K =1.

To implement the test, we have to specify the explanatory variable. In Panel A of

Table 1 we test for remaining ARCH effects by choosing z; = &2/ h; and in Panel B we
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choose x; to be equal to the VIX index. We report the empirical size for the LM test
given in equation (32) as well as for the original, LM 7, and modified, LM 7 moea, test
statistics of Lundbergh and Terésvirta (2002). Also, we have to choose the dimension of
i, and +£7 (817 | respectively. We opt for a dimension of K = 1.1 We first discuss
the results when testing for remaining ARCH effects. As Panel A of Table 1 shows, the
empirical size of both versions of the test statistic is very close to the nominal size when
Zy is normally distributed. In case of Student-¢ distributed errors, the two test statistics
are slightly undersized. For the LM test statistic, this is an observation also made in
Lundbergh and Terésvirta (2002) and Halunga and Orme (2009). As panel B shows, both

tests are modestly oversized when the VIX is used as an explanatory variable.

3.2 Power properties

We simulate the model under the alternative using the exponential specification given by
To4 = exp(mwyXy). (46)

Three alternative weighting schemes 7, are considered. The first one includes only the
first lag of x; with a weight of mo; = 0.3. We refer to this weighting scheme as one with
immediate (I) decay. The second and third weighting scheme are shown in Figure 2. The
red and blue lines represent weights that either have a fast (F) or a slow (S) decay. The
second and third weighting scheme are scaled such that their weights add up to 0.3.!!
Table 2 presents size-adjusted rejection rates that were obtained from the Monte-Carlo
simulations. The LM test statistics are based on 1, with x; € {VIX,, VIXtm), V[Xt(ﬁ‘r’)}.
We present two versions of the Lundbergh and Terdsvirta (2002) test. The modified
Lundbergh and Terdsvirta (2002) test, LM 1 04, is based on f"tL Timod 11t uses the same
x; as in LM. As before, LMt is based on ftLT with z; = &2/ izt and, hence, tests for
‘ARCH nested in GARCH’. In order to analyze to what extent the rate of decay affects
the power, we simulate processes under the three alternative weighting schemes. For all

three test statistics we choose K = 1, i.e. the tests are based on the first lag of x; only.

19The results presented below are robust with respect to increasing the dimension of #; and #X7

(££7mo%)  The corresponding tables are available upon request.
"The weights were generated using a Beta weight scheme. For a detailed discussion of the Beta

weighting scheme see Ghysels et al. (2006).
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Figure 2: Alternative weighting schemes g with fast (F; red) and slow (S; blue) decay.

Thus, the results in Table 2 illustrate the performance of the test statistics when K is
correctly chosen but also when K is smaller than the true lag length.

We first consider the squared VIX as the explanatory variable, i.e. we choose z; =
VIX;. In the GARCH equation we employ models with oy = 0.09 (high persistence)
and oy = 0.07 (moderate persistence). Besides the size-adjusted power for the different
weighting schemes, we also report the variance ratio: VR = Var(In(ry,))/Var(In(7ohot)),
which reflects the fraction of the variance of the log conditional variance that is due to the
variance of the log long-term component.'? For example, for ag = 0.09 in combination
with an immediately decaying weighting scheme, 15.6% of the total conditional variance
is due to the long-term component. When «y is decreased to 0.07, the V R increases to
35.5%. Intuitively, decreasing ag, means reducing the variability with which the short-
term component fluctuates around 7.

First, consider the case where ag = 0.09. For the immediately decaying weighting
scheme, the LM test rejects the null hypothesis in 74.4% of the simulations at the nominal
5% level. In contrast, the rejection rate of the modified Lundbergh and Terésvirta (2002)
test, LM 7. mod, i 42.2% only. Next, we consider the weighting schemes with fast and slow
decay. In these cases, the long-term component becomes less variable and, hence, more
difficult to detect. Consequently, the power of all three tests deteriorates. Nevertheless,

the LM still has considerably higher power than LMz 0. When aq is decreased to

12This variance ratio has been employed in Conrad and Loch (2015a) as a measure for the relevance
of the long-term component. For example, using the realized volatility as an explanatory variable, they

find a VR of roughly 13% for data on the S&P 500 for the 1973 to 2010 period.

23



Table 2: Empirical size-adjusted power for exponential long-term component.

2y VIX, vix® vix{®
wo1 = 1, wge = 10
ap = 0.09 ap = 0.07 ap = 0.09
weighting scheme I F S 1 F S I I
1% | 55.4 51.1 279 60.3 57.1 34.1 12.6 9.2
LM 5% | 744 T1.0 499|799 773 594 36.8 19.9
10% | 81.7 79.3 62.0 | 8.7 87.3 73.0 49.8 32.2
1% | 20.8 18.8 12.9| 44.3 41.5 30.2 5.9 3.4
LMprmed 5% | 422 399 312|709 69.5 59.0 15.6 11.1
10% | 55.7 52.8 42.5 | 822 80.7 73.0 22.1 18.6
1% | 07 09 08 | 07 08 08 0.9 0.8
LMyt 5% 56 56 59 | 59 56 56 5.0 4.7
10% | 9.5 10.1 10.8 | 11.2 11.2 11.2 9.4 9.3
VR 15.6 155 14.8 | 35.5 352 34.1 14.7 12.0

Notes: The table reports the size-adjusted power. The specification of the long term
component is given by 79, = exp(m(x,) with weighting schemes with immediate
(I), fast (F) and slow (S) decay. The GARCH parameters are f, = 0.9 and wy =
1—ap—pB. Innovations Z; are standard normal distributed. The variance ratio, VR =
Var(In(7¢;))/Var(In(rothot ), is the fraction of the variance of the log conditional
variance that is due to the variance of the log long-term component. All test statistics

are based on K = 1.

0.07, this increases the power of both tests. For example, for the immediately decaying
weighting scheme the size-adjusted power at the nominal 5% level is now 79.9% for the
LM test. Clearly, with lower o and thus less volatile GARCH component, the long-term
component can be detected more easily. As before, having more slowly decaying weights,
i.e. increasing the smoothness of the long-term component, reduces the power of the tests.
In line with the arguments at the end of Section 2.5, the difference in the power of the LM
and LM 7 m0q statistics is less strong when «y is decreased to 0.07. Finally, the last two
columns of Table 2 show the rejection rates for the case that the long-term component is

based on the monthly and quarterly rolling window versions of the squared VIX. Then,

24



even for the immediately decaying weighting scheme the long-term components are very
smooth and the lowest V R’s are observed. As expected, the size-adjusted powers are the
lowest for these two cases. Note that in all eight scenarios the original version of the
Lundbergh and Terésvirta (2002) test, LM 7, has no power to detect deviation from the
null. This is not surprising since LMpr is searching for an omitted ARCH component
and, hence, is simply ‘searching in the wrong place’.

In summary, the size-adjusted power of the newly proposed test, LM, is higher the
more volatile the long-term component is and the less volatile the short-term component
fluctuates around the long-term component (i.e. the lower «y is).

We performed the same analysis as in Table 2 for the case of Student-t distributed
innovations Z; (see Table 6 in Appendix B.1). As the table shows, for each specification the
t distributed innovations decrease the V R in comparison to the one that we obtained for
normally distributed innovations. The lower V' R’s then lead to a loss of power, i.e. under ¢
distributed innovations the long-term component is more difficult to detect. However, all
qualitative results regarding the different versions of the test statistics remain unchanged.

Additionally, we performed several robustness checks.

Sample size: Given that a sample size of T" = 1000 is relatively modest for applica-
tions in financial econometrics, the power of the LM test is very satisfactory. However,
in order to evaluate the effect of increasing the sample size on the power, we performed
the same simulations as before but with 7" = 2000. As expected, in the larger sample the
power of LM and LM 04 increased substantially under all scenarios.

Choice of K: As a further robustness check, we also performed simulations in which
we increased K such that it approaches the true lag length of the fast and slow decaying
weighting schemes. Given the smoothness of our explanatory variable (the first order
autocorrelation of VIX; is 0.95), this did not lead to significant gains in power relative
to simply choosing K = 1 (see also the discussion below Theorem 3).

Linear long-term component: In order to evaluate the effect of different choices for
f(+) on the power of the test statistic, we replaced the exponential specification of 7¢; with
the following linear specification: 79, = 1 + Z,[::l ToxTi_r. Besides the exponential one,
the linear specification is most often used in empirical applications. The corresponding
results for normally and student-¢ distributed innovations can be found in Tables 7/8 in

Appendix B.2 and, again, qualitatively confirm our previous findings. Note that the linear
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specification leads to lower variance ratios which explains the difference in power.
Alternative specification under H;: Under the alternative, we also simulated the
additive two-component GARCH(1,1) model of Engle and Lee (1999) and applied all
three tests. However, neither the original LMpp test nor LM and LMpr .04 detected a
deviation from the null in this case. Since the additive two-component GARCH(1,1) has a
GARCH(2,2) representation, this result is not surprising. Even thought the GARCH(1,1)
under the null is misspecified it might adequately capture the volatility persistence of the
GARCH(2,2) by choosing « and f such that the sum is close to one. Hence, the tests that
check for multiplicative misspecification search in the wrong place and, consequently, do

not reject.

4 Empirical Application

We consider two empirical applications. The first one deals with daily, weekly and monthly
return data that are combined with explanatory variables which are available at the same
daily frequency. The second one applies the test in a mized-frequency setting. For both

applications we use log-returns on the S&P 500.

4.1 Daily, Weekly and Monthly Data

First, we apply our test to seven variables that are observed at a daily frequency and check
whether these variables might be useful in a two-component GARCH specification. The
first explanatory variable is the squared VIX, VI Xt(l). We construct two measures of re-
alized variance. The first one is simply the daily squared return, RV;(I) = &2. The second
one is the daily realized variance, Wil), defined as the sum of the squared five-minute
returns within each day. This measure is obtained from the Oxford-Man Institute’s “re-
alised library”. While the VIX and realized volatility measure stock market uncertainty,
we use the Baker et al. (2016) daily index, EPUt(l), as a measure of general economic
policy uncertainty. The last three variables are meant to proxy for macroeconomic con-
ditions. Here, we use the ADS Business Conditions Index, ADSt(l), suggested by Aruoba

)

et al. (2009) as well as the surprise, Surplg1 , and uncertainty, U ncgl) indices of Scotti
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(2016).'3 All seven variables might potentially be useful for predicting future stock mar-
ket volatility. With the exception of Wil), our sample starts in January 1991 and ends in
June 2016, i.e. covers 25 years. Unfortunately, Wﬁl) is available for the period January
2000 to June 2016 only. In addition to the daily variables, we also consider the 22-days
rolling window versions, defined as 2\*2 = 1 /22 231:0 Ty_j.

Table 3 shows the contemporaneous correlations between the seven variables. Below
the diagonal the correlations for N = 1 and above the diagonal the correlations for
N = 22 are provided. For N = 1, VI Xt(l) and Wil) have the highest correlation
(0.76) among all variables. Interestingly, the correlation between Wil) and RVt(l) is only
0.54, presumably due to the fact that RV;(I) is a noisy measure of daily variance. The

) is positively correlated with economic

policy uncertainty, EPUt(l), and uncertainty related to the state of the economy, U ncgl),

other correlations have the expected signs: VI Xt(1

but negatively correlated with the business conditions index, ADSt(l), and economic data

) For N = 22 the correlations between all variables increase in absolute

surprises, Surpgl
value. Interestingly, the correlation between Wim) and RVtm) is now 0.98, showing that
the measurement error arising from using daily returns instead of high-frequency returns
is much less pronounced when estimating monthly realized variances.

Next, we estimate a GARCH(1,1) for the daily log-returns on the S&P 500 and then
apply our LM test to each of the variables. As Panel A of Table 4 shows, the LM test
rejects the null for VIXt(l), R—V,El), EPUt(l) and ADSt(l) at the 1% level. Thus, these
variables might be useful predictors of stock market volatility and could be drivers of
an omitted second component. The test outcome is line with the previous literature:
realized (and expected) variances are found to be useful in GARCH-MIDAS models in
Engle et al. (2013) and Conrad and Loch (2015a). Similarly, Dorion (2016) shows that
a GARCH-MIDAS model based on the ADS Business Conditions Index is informative
for the valuation of options. The finding that the test does not reject the null for RVt(l)
is likely to be due to the fact that RV;(l) is a noisy measure of the daily variance. At
first sight, it might appear counterintuitive that the test rejects for VI Xt(l) and EPUt(l)

but not for U ncgl). However, although the three series are positively correlated, U ncﬁl)

BData on the ADS can be obtained from the website of the Federal Reserve
Bank of Philadelphia. The surprise and uncertainty indices can be downloaded from

https://sites.google.com/site/chiarascottifrb/.
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Table 3: Correlations between explanatory variables, ng), for N =1 and N = 22.

vix™ rv™ ®RVY EPu™  ADS™ Und™  Surp™
vix™ | 100 090 0091 0.60 068 052  -0.36
RV | 054 .00 0.98 0.51 059 044  -0.36
RV™M | 076 053 1.00 052 057 044 -0.38
eru™ | 043 023 031 1.00 043 036 -0.23
ADS™M | 062 031  -041  -0.30 .00 -0.51 0.26
Unc™ | 047 022 0.30 0.24 -0.46 1.00 -0.24
Surp™ | 030  -016 -024  -0.16 020  -0.23 1.00

Notes: The table presents the correlations between the different explanatory variables.
Correlations below the diagonal correspond to N = 1 and correlations above the diagonal
to N = 22. Correlations involving WEN) are for the 2000-2016 period. All other

correlation figures are for the 1991-2016 period.

often spikes (e.g. in the years 2004, 2005 and 2012) when the other two series do not
increase.'? Potentially this difference is due to the fact that VI Xt(l) (and partly EPUt(l))
are forward-looking, while U ncEN) is based on current surprises in macroeconomic releases.

)

Similarly, the news revealed by Surp,EN might be instantaneously incorporated in stock

) may not be useful for predicting future long-term volatil-

markets and, therefore, Surpgl
ity. Also, all variables for which the test rejects reveal a pronounced cyclical (ADSt(l))
or counter-cyclical (VIXt(l), R—V,El), EPUt(l)) pattern, while Uncgl) and Surpgl) are less
(counter-)cyclical. Given the empirical observation that long-term stock market volatility
is counter-cyclical, this provides a further rationalization for the test outcomes.

The LM tests for the 22-day rolling window versions of the explanatory variables point
into the same direction as before. While the test rejects for V1 Xt(22) and R—V,Em) at the
1% level, it rejects for EPU and ADS® at the 8% level only. As discussed in the

simulation section, the test appears to loose power when the explanatory variables become

smoother. Interestingly, the test does still not reject for W,Em). Although the correlation

4Scotti (2016, p.16) compares U ncgl) with the VIX and economic policy uncertainty and notes that
U ncgl) “exceeds 1.65 standard deviations above its mean only few times but the peaks do not always
correspond with the peaks of the other series suggesting that these uncertainty measures might indeed

carry slightly different information.”
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between RVtm) and Wim) is 0.98, the two measures differ substantially during crises
periods such as October 2008. This is because large daily movements in the S&P 500
typically lead to much stronger increases in Rl/;m) than in Wﬁm). Since the fraction of
the total conditional variance of daily returns that is potentially due to variation in the
22-days realized variance is relatively small, the test does not detect an effect of RV;(%)
which systematically ‘overshoots’ during turbulent times.

Also, it is important to note that the LM and LM 7 04 tests lead to the same decision
for N =1 but LMy o4 never rejects for N = 22.

Table 4: LM test for S&P 500 returns for the 1991-2016 period.
Panel A: daily returns

ot vix® ry® ®RVY ppu®  ADSY  Und®  Surp!
LM 9246  1.63 2119  21.63 6.21 0.02 1.09
[<0.01] [0.20] [<0.01] [<0.01] [0.01] 0.90] [0.30]
LMitmod | 3262 169 997 2163 4.29 0.25 0.09
[<0.01] [0.19] [<0.01] [<0.01] [0.04] [0.62] [0.76]

ot vix® rv® RV Epu®  ADS® Uncd®  Surp®
LM 951 008  6.53 3.14 3.08 0.62 0.17
[<0.01] [0.77] [0.01] 0.08] [0.08] [0.43] [0.68]
LMigmea | 238 001 166 0.16 0.42 1.68 0.70
[0.12] [0.91] [0.20] [0.69] [0.52] [0.20] [0.41]

Panel B: weekly returns

ot vix™ rv™ ®" Epu™ ADS™ Und™) SurpV)
LM 9877 3352 1176 16.59 5.69 0.00 4.63
[<0.01] [<0.01]  [<0.01] [<0.01] [0.02] 0.97] [0.03]
LMigmeq | 1490 2789 1149  6.65 6.3 0.11 1.93
[<0.01] [<0.01]  [<0.01] [<0.01] 0.01] [0.75] [0.16]

Panel C: monthly returns

zt vix®™ gy RYM ppu®™ Aps™ Und™ Surp™
LM 644 1477 786 1870 9.71 187 020
[0.01] [<0.01]  [<0.01] [<0.01] [<0.01] (0.17] [0.66]
LMirmea | 246 817 448 1056 1.54 2.44 0.33
[0.11] [<0.01] [0.03] [<0.01] 0.21] [0.11] [0.56]

Notes: The table reports LM and LMy 1 med test statistics for seven explanatory variables

based on K = 1. Numbers in brackets are p-values. For all variables but Wﬁ') the sample

covers the 1991-2016 period. For Wi') the sample is based on the 2000-2016 period.

Finally, we apply the LM test to weekly and monthly data. For this, we calculate

weekly /monthly returns as the sum of the daily log-returns within each week/month.
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We construct weekly/monthly explanatory variables as the average of the explanatory

W), or month xEM). The time index t now refers to a weekly

variables within each week, :cg
or monthly frequency. Panels B and C of Table 4 show that the test results remain
qualitatively unchanged. Interestingly, now the test rejects the null for RVt(W) as well
as RV;(M). An explanation could be as follows: as noted before, RV;(W) and RVt(M) are
more accurate estimates of the weekly and monthly variance than RV;(I) is for the daily
variance. In addition, the fraction of the total conditional variance that is due to the long-
term component and, hence, due to z; is larger for low-frequency (weekly or monthly)
than for high-frequency (daily) returns. This intuition is confirmed when estimating
GARCH-MIDAS models for daily or weekly/monthly data (results not reported).

In summary, our test results provide convincing evidence that a simple GARCH(1,1)
is misspecified for the given sample. However, which variable and frequency should be
selected for modelling the second component will ultimately depend on the specific appli-
cation. For example, one variable might dominate when one is interested in forecasting

tomorrow’s conditional variance, but another one when the interest lies in forecasting next

month’s variance.

4.2 Mixed-Frequency Data

For the mixed-frequency application we use the same data as in Conrad and Loch (2015a).
We construct quarterly realized variances RV, from the continuously compounded daily
S&P 500 stock returns for the 1973Q1 to 2010Q4 period. Eleven macroeconomic variables
are then used to test whether macroeconomic conditions can predict financial volatility.
The macro variables are: real GDP, industrial production, the unemployment rate, hous-
ing starts, corporate profits, the GDP deflator, the Chicago Fed national activity index
(NAI), the new orders index of the Institute for Supply Management, the University of
Michigan consumer sentiment index, real personal consumption and the term spread. All
variables are considered at the quarterly frequency. We include the NAI and the new
orders index in levels and take the first difference of the respective level for the unem-
ployment rate and the consumer sentiment index. For all other variables, we calculate
annualized quarter-over-quarter percentage changes. For a more detailed description of
the macro variables see Section 3 in Conrad and Loch (2015a).

We focus on the predictive regression version of our test statistic (see Alternative 2 in
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Section 2.6). Based on the following predictive regression

In(v/RV;) = c+ muzy_1 + pln(v/RV,_1) + (,, (47)

Conrad and Loch (2015a) find that the 7 parameter estimate is insignificant for each
macro variable (see their Section 4.4). This result is in line with the common notion
that macro conditions do not help to forecast quarterly stock market volatility once one
controls for lagged stock market volatility. We now show that this conclusion is premature.
Following the discussion in Section 2.6, we first estimated equation (43) for the same data
(again with K = 1) and found a significant effect for six out the eleven variables (results
not reported). Table 5 shows that these results are robust to including the first lag of
the volatility-adjusted realized variance as an additional regressor, i.e. we consider the

regression:!?

— —

ln(ji’\‘?t) =C+ mTiq + Pln(k\‘?t—l) + 6t (48)

—

Although the estimate of the volatility-adjusted realized variance, ﬁx?t, has measurement
error, for simplicity we rely on the usual critical values when testing for the significance
of m;. Since the test is then undersized, still finding a significant effect is a strong result.

More specifically, real GDP, industrial production, the NAI and new orders are sig-
nificant at the 1% level. The unemployment rate and corporate profits are significant at
the 5% and 10% level. The fact that we do find a significant relationship between macro
conditions and financial volatility when estimating equation (48) instead of equation (47)
suggests that the Volatil/itz—adjusted realized variance is indeed the appropriate dependent
variable. Although ln(j%T/ ¢) as well as RV; suffer from measurement error, the effect of
the measurement error appears to be much stronger for RV;. When reestimating equa-
tion (48) by including more lags of the macro variables the picture remains the same.®
In conclusion, we provide strong evidence that the apparent inability of macro conditions
to forecast financial volatility which is document using predictive regressions as in equa-

tion (47) seems to be driven by the strong measurement error in RV; which masks the

existing relationship.

15We also estimated the same equation with RV ¢ replacing RV t. The results remain qualitatively

unchanged.
16For some variables, the results further improve. For example, when including lags of housing starts

the third lag is highly significant. This is in line with the finding in Conrad and Loch (2015a) that

housing starts is a leading variable and, hence, affects financial volatility with some lag.
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Table 5: Predictive Regressions

Variable ¢ T P adj. R?

A real GDP 6.4007*  —0.0107"**  0.1829** 4.81
(0.6885) (0.0040) (0.0866)

A Ind. prod. 6.4174*  —0.0052**  0.1789** 4.85
(0.6891) (0.0018) (0.0866)

A Unemp. 6.4461***  0.0799** 0.1735** 4.39
(0.6644) (0.0349) (0.0834)

A Housing 6.2327**  —0.0004 0.2014* 3.29
(0.7114) (0.0004) (0.0894)

A Corp. prof. 6.3006***  —0.0009*  0.1939** 4.14
(0.7037) (0.0005) (0.0883)

A GDP deflator 6.2222***  —0.0029 0.2039** 2.94
(0.7196) (0.0075) (0.0899)

NAI 6.5619*  —0.0521"**  0.1586** 6.35
(0.6545) (0.0173) (0.0823)

New orders 6.8507**  —0.0058*  0.1622*** 6.07
(0.7127) (0.0021) (0.0866)

A Cons. sent. 6.2262*** 0.0010 0.2020** 2.89
(0.7171) (0.0034) (0.0900)

A real cons. 6.3365*** —0.0072 0.1905** 3.64
(0.7083) (0.0060) (0.0895)

Term spread 6.3032***  —0.0186 0.1961** 3.84
(0.6857) (0.0149) (0.0867)

Notes: The table reports parameter estimates for the predic-
tive regression given by equation (48). Robust standard errors

d = ** * indicate significance

are presented in parentheses an
at the 1%, 5%, and 10% level. The adjusted R? is reported in

percentages. The sample covers the 1973Q1 - 2010Q4 period.

5 Conclusions

We develop a Lagrange Multiplier test for the null hypothesis of a simple GARCH model
against a multiplicative two-component GARCH specification. The test provides a first
solution to statistically evaluate if there is a separate long-term time-varying volatility
component driven by a macroeconomic explanatory variable, besides the standard short-
term GARCH part. We derive the asymptotic properties of our test and study its finite
sample performance. The test covers the case that the returns as well as the explanatory
variable are observed at the same frequency but also the empirically relevant mixed-

frequency setting. In an application to S&P 500 returns, we find that the test provides
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useful guidance in model specification. We also provide an explanation for why standard
predictive regressions might fail to find a relationship between macro conditions and

financial volatility.
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A Proofs

Proof of Theorem 1. First, we show that €2 is finite and positive definite. From Francq
and Zakioan (2004) it follows that €2, is finite and positive definite. What remains to
be shown is that ., is finite and positive definite. If this is true, then by the Cauchy-
Schwarz inequality the “off-diagonal matrices” will also be finite and positive definite.
Finiteness of ,:
Recall from equation (21) that Qrr = +(kz — 1)E[rf5(rg3)]. It follows from Assump-
tion 4 that 0 < kz — 1 < co. Moreover, ||E[rg5(rgy)]|] is finite if E[|[rgs,(rgs)[|] < co.'

A typical element of the K x 1 vector rg5 is given by

J
okt = I CT aohf.o Z ﬁéfg—l—j%—l—k—j)- (49)

0,t =0
First, f§ is bounded by Assumption 4 and E[|x;_x|?] < co by Assumption 5. Second,

R0l A\ < oot N
=0 X0P0E—1—jLt—1-k—j Q0PpEt—1—j
E |~ ! § L R (50)

IN
&=

0 j=0 (wo + O‘()ﬂég?—l—j)
j 2 2\ /2
C aofoEi_1_;
< E : Ti1—foei 51
j; (wo—i‘Oéoﬁg)E?_l_j) ik ( )
- ﬁj s/4 oy 1/2
Q@
= ;] b ( 20053—1_]-) T1-k—j| | (52)
oyt ey iy 1/4
< L (E [5t—1—j}) (E Ufct—l—k—j\ D
0
ZB%SM < 0.
5=0

The arguments used above are similar to the ones in Francq and Zakioan (2004, Eq. (4.19),
p.619). In particular, in equation (50) we use that h§5 > w0+0zoﬁéaf_1_j. In equation (51)
we use Minkowski’s inequality. Next, in equation (52) we use the fact that w/(1+w) < w?*
for all w > 0 and any s € (0,1). Finally, Assumption 3 implies that there exists some
s > 0 such that E [5331—3'] < o0 (see Proposition 1 in Francq and Zakioan, 2004, p.607).
By Assumption 5, E U%-l-k-jﬂ < 0.

"Throughout the paper || - || denotes the euclidean norm.
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This implies E[|rg%,|*] < oo and E[|r§5,r55,|] < oo by Cauchy-Schwarz inequality
which means that €, is finite.
Positive definiteness of . :

As Kz —1 >0, it remains to show that ¢'E[rg5,(rg;)’]c > 0 for any non-zero ¢ € RF*!.

Assume the contrary, i.e., there exists a ¢ # 0 such that ¢'E[r§%(rg3)’]c = 0. This implies

E[(c'ry)?] = 0 and, thus, c'tf5 = 0 a.s.. Hence, there exists a linear combination of
Tt - -+ Toace Which equals zero a.s., i.e.,
K
0= E Cr: k—— E Boat 1Tt 1k a.s. (53)
k=1 he j=0

Using that 0 < 5, < 1 by Assumption 3 and rearranging, this requires
/ Qo -1 2
c'x; = [hTo(l — BoL) L} (e7¢'xy)  as., (54)
0.t

where L denotes the lag operator. Clearly, the operator in square brackets cannot have
an eigenvalue of 1. Moreover, Assumption 4 imposes Z? and, therefore, also €? to be
non-degenerate. Hence, the only way to fulfill the above equation is by ¢'x; = 0 a.s..
This would imply that we can write cx = — ZkK:_ll cx/cxxi— and, hence, 7o, would have
a representation which is of the order K — 1. However, this contradicts Assumption 5.
Thus, 2., must be invertible and hence positive definite.

Next, E[d*(n,)|Fi-1] = 0. From Francq and Zakoian (2004) and Assumptions 3-5 it
then follows that df°(n,) is a stationary and ergodic martingale difference sequence with
finite second moment. Applying Billingsley’s (1961) central limit theorem for martingale
differences gives the result.

The following proposition will be used in the proof of Theorem 2.

Proposition 1. Under Assumptions 3-6, we have that

T -
adoo ad7,(n,)
—— Z L Iy =-E {L} : (55)
t=1 on’
where =1, + op(1).
Proof of Proposition 1. We obtain (55) by showing that J.,(n) = —E [adgg,(n)] is finite

with a uniform bound for all 7 € ©. Then a uniform weak law of large numbers (see, e.g.,
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Theorem 3.1. in Ling and McAleer, 2003) implies

sup,,

Tl 2 bt | = o0l

t=

Using equation (23) we obtain

0dz,(m)|| _ 1
on’' = 2

Equation (55) follows from the triangle inequality and the fact that 11 = n, + op(1).
orye

on’ )
) . (56)

The last inequality follows with a generic constant 0 < C' < co and h® > w > 0.

Al 1)1+

£2
2
orye
on’

< C|s§+w\ (Hré"’H~ll(y§°)’ll+'

First, consider the three elements of ||(y°)'||. To simplify the notation note that

Folemo = 5E. Since G = 1/(1 = 5) we have | 5E] < 1/(w(t = §) < o0. Then
O‘agﬁio - ijo aﬂjgt—l—j < hy® and, therefore, h:ioo o < 1l/a < 0. Flnally, =

> im0 B8N w + ae} ;). We then obtain

1 Ok li i (w+asiy )
h$° Bj:0w+5](w+aeflj)
1 - . S s
< G 210w ey, (57)

where we again use the fact that w/(1 4+ w) < w® for all w > 0 and any s € (0,1). It
follows that ||(yf*)|] < C'(14 323207 |°(w + agf,_;)?|) for some constant C” > 0.
Hence, using Cauchy-Schwarz inequality, the first summand in equation (56), i.e

E [sup,, &7 +w| - |[ef°]] - [|(¥£°)']]], can be bounded from above by the terms

VElsup,[e? + wEfsup,[|x7][? (58)

and

supy, Y A7 Elsup,(w + agfy_;)°lef + ol [|r][] <

§=0
sup, S j\[Blsup, (@ + act_ ) + w2 Bfsup, [[r5°l[?] (59)
j=0

The finiteness of (58) follows from Assumption 6 and similar arguments as in the proof

of Theorem 1. The finiteness of (59) follows by applying Holder’s inequality, since for the
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elements in the sum which involve expectations of the squared observations we have

E[sup, (w4 ag;_;_;)*|e; + wl’] <

s s/(1+4s) 1/(1+s)
(Efsup,,(w + ag;_,_;)*+))) (

Efsup, |} + w[*"*]) (60)

and Assumption 6 applies again.

Using the Cauchy-Schwarz-Inequality for the two factors in the second term in (56),
ory®
on’

Oree ) 0 (1 & 4
(1=t = —x — — (Twzaﬁ%f_l—'xt—l—j)
on’ on' on' \ h; 0 !
0 U 0
— 8—17’Xt - E <Z O‘ﬂjgf—l—ja—n/xt—l—j>
=0
1 & . /
+ (hT.O Zaﬁjef_l_jxt—l—j> (v¢°)
t =0

1 w— o .
e 2 () o

we are left with the need to show that E [sup,7 H

2] is finite. This follows from

The first two terms vanish in the model with an explanatory variable x; from outside the

Ox¢ —

model as o

0 or in a model with x; ; = &7 ,.

Remark 5. There also exists a bound for E [su1p77 H%
2
t—

ments xy_j = 200’“ (the ‘ARCH nested in GARCH’ case). Here, in the first two terms in
t—k

2} in the case of x; with ele-

. O - .
equation (61) we have 832{,’“ = —(:;g’c)z a:;'k and, hence, explicit bounds for terms of this
t—k

type can be obtained as before.

Boundedness of the norm of the third term follows for all 1 in expectation with a com-
bination of the argument directly above and the considerations in the proof of Theorem 1.

The fourth term can be written as:

. i
0 Zﬁoﬁj5§_1_]‘xt—2—j O‘Zﬁo]ﬁj 53_1_]‘%&—2—]‘

1 0 Z]O-io 5j5§_1_j$t—3—j az;iojﬂj_l’f?—l—jfl?t—g—j
=l ©
¢ :

. i
0 Z;.;()ﬁ]g%_l_jxt—l—l(—j 042(;10]5] €t2—1—jxt—1—K—j

Hence, for typical elements of the second and third column it follows that

00 2

1 .

2
Esup,, e E Fei 1 j1k—j| <00
t

J=0
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and
2

1
Boup, | e > 354y < oo
7=0

by similar arguments as used before.

Proof of Theorem 2. First, consider a mean value expansion of /7' D¢(n) around the

true value 1,

_ VTD (i) = VID(n,) Zadw D /(i = mo) (63)

t=1

with 7 = ny+op(1). Under Assumptions 3 and 4, Francq and Zakoian (2004) have shown
that

T -
3d°° [admt(no)}
- § — _E |Ztil0) (64)
T
=1 on’
and, hence, equation (63) can be written as
VI(7 = mg) = Iy VTDy () + op(1). (65)

Similarly, a mean value expansion of vTD2 (%) around the true value 7, leads to
ﬁDOO( )= \/_DOO (170) Z — 1) (66)

Combining equation (65) and Proposition 1 leads to

VIDZ(R) = VTDZ(ng) = JaydyyVTD (1) + 0p(1) (67)
_ DOO(TIO)

= —Jﬂ_an% : I \/T n op 1 68

[ ] D= (n,) +op(1) (68)

= [~Jad,s o IVTD™(ng) + op(1). (69)

Applying Theorem 1 gives the asymptotic distribution
coren d _ -
VTDX () == N(0, [ Tapd b - 10T, d00 2 1)) (70)

which has the form of AQA’ in Halunga and Orme (2009, p.372/373). The covariance

matrix can be written as

Y = [Jandyy o 0QJmp 0 o 1)
1 1 -1 1
= Qun + I d ) QI T = T I Qe — Qe J 0T

40



Finally, using equations (21), (24) and (25) the expression for ¥ simplifies to:
S = 10z — 1) (Bl )] - Blrsvss)] (Blyss(vas)) " Ebvss)]) . (71)
|
Proof of Theorem 3. We show that
VID. (7)) = VIDZ (1) + op(1). (72)

Hence, the observed quantity v7D,(7) will have the same asymptotic distribution as
the unobserved v/TDX (7). The asymptotic distribution of the test statistic then follows
directly from Theorem 2. Standardization with the consistent estimator 3 instead of the
theoretical X, has no effect on the final y?-distribution of the LM test statistic. This can
be easily seen from similar considerations as the ones outlined above and below in detail.

Since
sup,|[VTDy (n) — VIDa(n)|| < —= ZSHPanﬂ — dr.(n)]; (73)
we establish equation (72) by showing that

% S supy A5, (1) — d ()| = 0p(1). (74)

Consider the following decomposition:

00 €t2 o 5?
2(d7"7t(n) - dﬂ',t(n)) = hT.O - rt - h—t — 1 r,
t
2
&

Since hy > w > 0 and h® > w > 0 we have

o 1
I43:06) = dnO)] < 2 {let ol
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First, note that
(fo) H(xf* —1,) = _0‘_25J5t 1—jXt—1—j- (75)

Next, consider a typical element:

1/2
2
_ 1/2
(f(/)) ! (Esupn‘rl(ft—rk,tF) = ESU.pn Q—Zngt 1— j$t 1—k—j
j=t
o ﬁj 2 2\ /2
P e 1
< Esup R e TR
; Tw+afe
1/2
00 Oéﬁj s/4 2\ /
< 3 (B, ( L )
j:

< (E[|5t—1—j|28)1/4( |93t 1-k—5"] )1/4

[0 S
sup,, (a 5’ s/4

)Y
= (Bl *) " (B \:ct K
)"

s/ 8/4

Q
Suby (a s/4

which shows that Esupn||rzf’t — rk,tH2 - 0(5t8/2)'

Hence,

Bsup, |22 |1 — || < /Bsup, || Bsup, |17 — re|[2 = O(5")

by Assumption 3 and equation (76). Therefore, % Zle Esup, |7 | |[r° —r¢|| = o(1) and,
hence, by Markov’s inequality % Zthl sup, [e7] [[r5° — || = op(1).
For the treatment of the second term we use the fact that
o’ - s\Jj ~2s
< — Z(ﬁ e, (77)
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where again we use that w/(1 + w) < w® for all w > 0 and any s € (0,1). Then,

—h o’ i s\d
Esup, &} ‘| < Esup,llgirioel || Sup, — >y
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The last line follows because it can be shown by similar arguments as in the proof of

Theorem 1 that Esup,|[r°||* < co and because Hélder’s inequality and Assumption 6
1/(1+s) s/(1+s)

imply that E|e/e}®;| < (E\et 1+S)\> (E 54(1*3)0

t— < 0. Equation (78) implies
that

T
1
ﬁ Z ESUPnff?‘ I} =o(1), (79)
=1

and, again, by Markov’s inequality ﬁ Zle sup,, 7| [t5°]| |[(he® — hy)/hi°] = op(1).

The third term can be treated as follows:

2

1 <& hee — h 1 < s
— I
—= ) sup,e7[[rf* —| < 5D suped]re —rtH2ZSUPT, =
\/Tt: h Tt:l
1 & he — h
< S sup 52||r°°—r|| sup ¢ = i

2
because Y, w? < {Zt 1wt} when w; > 0 for all . Above, we have already shown
= 0(B").

—ht

00

that >/, Esup, &7 |[rf° — || = O(1) and Esupn
|
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B Simulation:

B.1 Size-adjusted power for exponential long-term component

and ¢ distributed innovations.

The following table provides simulation results on the size-adjusted power for the case

that the innovation Z; is t distributed with 7 degrees of freedom.

Table 6: Empirical size-adjusted power for exponential long-term component and ¢ dis-

tributed innovations.

y VIX, vix® vix{®™
wo1 = 1, wp2 = 10
ap = 0.09 ag = 0.07 ap = 0.09
weighting scheme I F S I F S I I
1% | 243 165 94 | 346 324 16.5 5.3 3.5
LM 5% | 549 44.1 32.1|59.3 57.1 39.3 20.1 13.9
10% | 66.8 58.1 45.7 | 71.3 68.7 53.1 36.0 22.6
1% | 15.6 126 10.1 | 29.9 27.7 21.6 5.2 3.8
LMprmed 5% | 305 258 227 |50.7 487 394 12.2 9.5
10% | 42.0 36.3 32.0 | 60.2 589 51.2 19.2 15.8
1% 0.9 1.0 1.1 0.8 1.0 1.1 1.1 1.0
LMpr 5% | 5.8 57 57| 50 52 5.1 5.6 5.3
10% | 97 9.8 99 | 95 9.7 10.0 9.8 9.8
VR 12.8 124 12.1 | 28.2 279 27.0 12.0 9.7

Notes: Innovations Z; are Student-¢ distributed with 7 degrees of freedom. Otherwise

see Table 2.
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B.2 Size-adjusted power for linear long-term component.

Table 7: Empirical size-adjusted power for linear long-term component and normally

distributed innovations.

2y VIX, vix® vix{®
wo1 = 1, wge = 10
ap = 0.09 ag = 0.07 ap = 0.09
weighting scheme I F S I F S I I
1% | 34.8 33.1 21.1 | 44.7 42.7 29.9 10.1 8.4
LM 5% | 57.2 54.8 39.2|66.5 64.6 51.5 28.9 18.0
10% | 66.4 64.8 50.7 | 75.6 T74.2 63.0 42.2 30.4
1% | 16.0 159 13.0 | 32.6 32.0 27.1 4.8 3.0
LMprmea 5% | 348 341 303 |59.2 581 51.1 14.3 107
10% | 44.2 43.3 38.6 | 71.1 70.0 65.6 18.9 17.2
1% 09 09 09 1.0 1.0 09 0.9 0.8
LMyt 5% 59 59 54 | 56 56 53 4.8 4.6
10% | 10.3 10.5 10.3 | 10.5 10.7 10.8 9.5 9.4
VR 12.4 123 12.1 | 29.5 294 29.0 12.0 10.5

Notes: Innovations Z; are standard normally distributed. The specification of the

long term component is given by 79 = 1 + Zszl TokZi—k- Otherwise see Table 2.
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innovations.

Table 8: Empirical size-adjusted power for linear long-term component and ¢ distributed

Tt

VIX,

wWo1 = 1, wo2 = 10

vix® vix®

ap = 0.09 ag = 0.07 o = 0.09
weighting scheme I F S I F S I I
1% | 243 20.0 14.6 | 30.0 28.6 18.7 4.4 3.2
LM 5% | 39.7 34.5 284|483 46.7 37.9 17.4 12.3
10% | 52.7 46.5 39.2 | 60.8 59.3 47.7 28.3 20.5
1% 103 9.2 83 [20.1 196 16.4 4.5 3.5
LMprmed 5% | 274 259 246 | 43.0 428 385 11.1 9.1
10% | 37.3 35.0 32.9 | 53.8 529 494 16.6 15.0
1% 1.0 11 11| 10 10 1.2 1.0 1.0
LMyt 5% | 5.5 55 56 | 5.3 53 5.3 5.7 5.4
10% | 99 9.8 97 | 99 100 10.0 9.6 9.7
VR 100 99 98 | 23.0 229 225 9.7 8.5

Notes: Innovations Z; are Student-t distributed with 7 degrees of freedom. The spec-

ification of the long term component is given by 79, =1+ Zszl morZi—r. Otherwise

see Table 2.
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