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1 Introduction

The financial crisis of 2007/8 has highlighted the need for a better understanding of the

interplay between risks in financial markets and economic conditions. Among others,

Christiansen et al. (2012), Paye (2012), Engle et al. (2013) and Conrad and Loch (2015a)

provide recent evidence for the counter-cyclical behavior of financial volatility.1 In par-

ticular, Conrad and Loch (2015a) show that changes in the secular component of stock

market volatility can be anticipated from variables such as the term spread, housing starts

or survey expectations on future industrial production. While Christiansen et al. (2012)

and Paye (2012) employ predictive regressions, Engle et al. (2013) and Conrad and Loch

(2015a) base their empirical analysis on a multiplicative two-component GARCH model.

In this model a short-term unit variance GARCH component fluctuates around a smooth

long-term component that is driven by macroeconomic conditions.

The findings in Engle et al. (2013) and Conrad and Loch (2015a) suggest that one-

component GARCH models are misspecified in the sense that they omit a multiplicative

component that is driven by an explanatory variable. However, standard procedures for

misspecification testing in GARCH models do not cover the case of explanatory variables

(see, e.g., Bollerslev, 1986, Lundbergh and Teräsvirta, 2002, or Halunga and Orme, 2009).

As most of them also require additive separability of the additional component under the

alternative, their adaption to a general multiplicative two-component structure is not

straightforward.2

For this reason, we develop a new misspecification test for the simple GARCH model.

While under the null hypothesis the true model is a GARCH(1,1), under the alternative

there is a second multiplicative component. We propose a Lagrange Multiplier (LM)

statistic which is based on the parameter estimates under the null and checks for a po-

tentially omitted long-term component. For our LM test statistic, we provide a detailed

derivation of the asymptotic properties. The arguments in the derivation rely on the

results for the quasi-maximum likelihood estimator (QMLE) for pure GARCH models in

Francq and Zaköıan (2004). The structure of the proof builds on the arguments used in

the proof of Theorem 2 in Halunga and Orme (2009), who consider general misspecifica-

1Their findings complement and extend the earlier work of Officer (1973) and Schwert (1989).
2For recent results on properties and estimation of GARCH models with explanatory variables that

enter in an additive fashion see Han and Kristensen (2014), Han (2015) and Francq and Thieu (2015).
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tion tests for GARCH models. The important difference between our test and theirs is

that we consider a situation in which the second component is driven by an explanatory

variable that may or may not be generated outside the model. In addition, Halunga and

Orme (2009) consider additive components only and focus on estimation effects from the

correct specification of the conditional mean. In our set-up, the volatility components

are multiplicative, causing substantial differences in the likelihood and test statistic. For

simplicity, we assume that returns have mean zero, thus abstracting from estimation ef-

fects from the mean. In order to derive the asymptotic distribution of the test statistic,

we require the standard assumptions on the GARCH parameters and the innovation term

for the pure GARCH model. In addition, our test needs assumptions on the moments of

the explanatory variable as well as on the observed (return) process. A nice property of

our LM test is that it will not depend on the functional form of the long-term component

under the alternative. Further, the test statistic is χ2 distributed independent of whether

the alternative hypothesis is two- or one-sided. This feature of the LM test has been

discussed in Francq and Zaköıan (2009) and does not hold for Wald and Likelihood ratio

tests which require estimation of a restricted model under the alternative. In a Monte-

Carlo simulation, we find good size and power properties in finite samples. Moreover, we

illustrate the usefulness of our procedure by two empirical applications to S&P 500 return

data.

The model under the alternative hypothesis is closely related to the GARCH-MIDAS

of Engle et al. (2013). Although this model is frequently used in empirical applications

(see, e.g., Asgharian et al., 2013, Conrad and Loch, 2015a, 2015b, Dorion, 2016, Opschoor

et al., 2014), there exists no asymptotic theory for the QMLE yet. Therefore, Wald-type

tests like simple t- or F -tests are not straightforward to employ in this context. The most

recent theoretical results by Wang and Ghysels (2015) are specific to linear long-term

components that are driven by realized volatility and only hold in a restrictive parameter

space which does not admit our null hypothesis. We illustrate how our test can be applied

even in settings with mixed-frequency data and, thus, can be used as a preliminary check

before estimating a GARCH-MIDAS model.

Our test statistic is also linked to the ‘ARCH nested in GARCH’ test for evaluating

GARCH models as proposed by Lundbergh and Teräsvirta (2002). Although it is impor-

tant to point out that the test by Lundbergh and Teräsvirta (2002) should be considered
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as a general misspecification test without a well-specified alternative, it is possible to think

of their ‘nested ARCH component’ as our long-term component with a specific choice for

the explanatory variable. Despite this analogy, the specification of their short-term com-

ponent is fundamentally different from ours. Under the alternative, in their short-term

component the squared observations are not divided by the long-term component, which

implies that the short-term component is not a GARCH process and, thereby, leads to a

different test indicator. In the Monte-Carlo simulation, we show that even if we modify

their test in order to allow for a general explanatory variable, the difference in the specifi-

cation of their short-term component leads to a considerable loss in power in comparison

to our test statistic.

Finally, our work complements recent research on misspecification testing in mul-

tiplicative component models of the smooth transition type by Amado and Teräsvirta

(2015), in the Realized GARCH model by Lee and Halunga (2015) and on the estimation

of semiparametric multiplicative component models by Han and Kristensen (2015).

The plan of the paper is as follows. In Section 2, the two-component GARCH model

is introduced and the LM test statistic is derived. This section also contains the main

asymptotic results. Section 3 provides some finite sample evidence in a Monte-Carlo

study. In Section 4, we illustrate how the test can contribute to modeling S&P 500 return

data. Section 5 concludes. All proofs are contained in Appendix A.

2 Model and Test Statistic

In Section 2.1, we first introduce the multiplicative two-component GARCH specification

and then discuss the null hypothesis of our test. The relationship between the two-

component model and the GARCH-MIDAS specification is explored in Section 2.2. We

derive the likelihood function and the test indicator in Section 2.3 and present our main

result on the asymptotic distribution of the test statistic in Section 2.4. Section 2.5

provides a comparison with the ‘ARCH nested in GARCH’ test and Section 2.6 covers

the mixed-frequency case.
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2.1 The Two-Component GARCH Model

We define the log-returns as given by

εt = σ0tZt, (1)

where Zt is independent and identically distributed (i.i.d.) with mean zero and variance

equal to one.3 σ2
0t is measurable with respect to the information set Ft−1 and denotes the

conditional variance of the returns. We consider the following multiplicative decomposi-

tion of σ2
0t into a GARCH component (‘short-term component’) and a component that is

driven by an explanatory variable:

σ2
0t = h̄∞0t τ 0t (2)

Follow the terminology used in Engle et al. (2013), we refer to the second component as a

‘long-term component’. This is, because in our setting the second component is typically

much smoother than the GARCH component.

The short-term component is specified as a mean-reverting GARCH(1,1):

h̄∞0t = ω0 + α0

ε2t−1

τ 0,t−1
+ β0h̄

∞
0,t−1 (3)

with α0 +β0 < 1. We denote the vector of true parameters in the GARCH component as

η0 = (ω0, α0, β0)
′.

The τ 0,t component is assumed to depend on the K lagged values of an explanatory

variable xt. It can be thought of as describing smooth movements in the conditional

variance as a function of the weighted sum of the lagged values of the explanatory variable:

τ 0,t = f(π′
0xt) (4)

where π0 = (π0,1, . . . , π0,K)
′ and xt = (xt−1, . . . , xt−K)

′. We make the following assump-

tions on the parameter space Π and the function f(·).

Assumption 1. The parameter space Π is a compact subset of RK and π0 lies in the

interior of Π.

Assumption 2. Let f be a known positive function, i.e. f(·) > 0, continuously differen-

tiable, with f(0) = 1, f ′
0 =

∂τ t
∂π′xt

|π=0 6= 0.

3Throughout the paper we assume that the conditional mean of the returns is zero. For GARCH

misspecification testing in the presence of a non-zero conditional mean see Halunga and Orme (2009).
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The assumption that f(·) > 0 allows to consider explanatory variables that take

positive as well as negative values. Further, we do not have to require that the π0,k are

all positive. That is, in our model the explanatory variable xt can have a positive as well

as a negative effect on the volatility. The main example that we have in mind for f(·) is
the exponential specification

f(π′
0xt) = exp(π′

0xt). (5)

This model has been used, among others, in Engle et al. (2013), Opschoor et al. (2014)

and Conrad and Loch (2015a). While Engle et al. (2013) and Conrad and Loch (2015a)

used realized volatility as an explanatory variable, Opschoor et al. (2014) opted for the

Bloomberg Financial Conditions Index.

Using the above notation, we are interested in testing H0 : π0 = 0 against the two-

sided alternative H1 : π0 6= 0. Under H0, the long-term component is equal one and the

two component model reduces to the nested GARCH(1,1) with unconditional variance

σ2
0 = ω0/(1− α0 − β0).

4

Note that equation (3) is specified such that it can be rewritten as an ARCH(∞)

h̄∞0t = ω0 + (α0Z
2
t−1 + β0)h̄

∞
0,t−1 =

∞∑

i=0

βi
0

(
ω0 + α0

ε2t−1−i

τ 0,t−1−i

)

which means that εt/
√
τ 0t =

√
h̄∞0tZt follows a GARCH(1,1) both under the null and under

the alternative. We make the following assumptions about the GARCH parameters and

the innovation Zt.

Assumption 3. η0 ∈ Θ where the parameter space is given by Θ = {η = (ω, α, β)′ ∈
R3|0 < ω < ω, 0 < α, 0 < β, α+ β < 1}.

Assumption 4. We denote by Ft−1 the σ-field generated by {(εs, xs); s < t}. As defined

in equation (1), let Zt be i.i.d. with E[Zt|Ft−1] = 0, E[Z2
t |Ft−1] = 1 and E[Z4

t |Ft−1] = κZ ,

where κZ is a finite constant. Further, Z2
t has a nondegenerate distribution.

Assumptions 3 and 4 imply that
√
h̄∞0tZt is a covariance-stationary process with un-

conditional variance σ2
0. Furthermore, by Jensen’s inequality they imply that E[ln(α0Z

2
t +

β0)] < 0 which ensures that under the null εt is strictly stationary and ergodic (see, e.g.,

4Later on, we also consider the one-sided alternative H1 : π0 6= 0, π0 ≥ 0 (latter elementwise). See

Remark 3 in Section 2.4.
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Francq and Zaköıan, 2004). Finally, the assumption on the existence of a fourth-order

moment of Zt is necessary to ensure that the variance of the score vector exists.

2.2 Relation to GARCH-MIDAS Model

The two-component model presented in the previous section is closely related to the

GARCH-MIDAS model suggested in Engle et al. (2013). In their model, the long-term

component is typically of the exponential form and the weights in the long-term compo-

nent are parsimoniously parameterized as π0,k = π̃0ψ0k, where the ψ0k ≥ 0, k = 1, . . . , K,

are typically generated from a Beta weighting scheme. The parameter π̃0 then determines

the sign of the effect of xt on long-term volatility. Alternatively, Engle et al. (2013) con-

sider a linear long-term component. However, the linear specification of f(·) can only be

used in combination with non-negative explanatory variables and requires π̃0 ≥ 0. For

this model, Wang and Ghysels (2015) use a rolling window realized variance of the last N

days as the explanatory variable, provide conditions for the strict stationarity of εt and

establish consistency and asymptotic normality of the QMLE. However, the proof of the

asymptotic normality of the QMLE crucially relies on the assumption that π̃0 > 0 and

ψ0k > 0 for k = 1, . . . , K and, hence, their framework does not directly allow to test the

null that the lagged xt are jointly insignificant (see Assumption 4.3 in Wang and Ghysels,

2015).

Most importantly, the GARCH-MIDAS specification allows for the possibility that the

explanatory variable is observed at a lower frequency, say monthly or quarterly, than the

daily returns. In this case, the long-term component varies at the lower-frequency only.

Although the mixed-frequency version of the GARCH-MIDAS is highly relevant from an

empirical perspective, there is no asymptotic theory for the general model yet. However,

in Section 2.6 we show that it is straightforward to extend our LM test statistic to the

mixed-frequency situation.

2.3 Likelihood Function and Partial Derivatives

We denote the processes that can be constructed from the parameter vectors η = (ω, α, β)′

and π = (π1, . . . , πK)
′ given initial observations for εt and xt by h̄t and τ t. It is im-

portant to distinguish between the observed quasi-likelihood which is based on h̄t =
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∑t−1
j=0 β

j(ω + αε2t−1−j/τ t−1−j) + βth̄0 and the unobserved quasi-likelihood function based

on h̄∞t =
∑∞

j=0 β
j(ω + αε2t−1−j/τ t−1−j) which depends on the infinite history of all past

observations. The unobserved Gaussian quasi-log-likelihood function can be written as

L∞
T (η,π|εT , xT , εT−1, xT−1, . . .) =

T∑

t=1

l∞t (6)

with

l∞t = −1

2

[
ln(h̄∞t ) + ln(τ t) +

ε2t
h̄∞t τ t

]
. (7)

Similarly, conditional on initial values (ε0, h̄0 = 0,x0) the observed quasi-log-likelihood

can be written as

LT (η,π|εT , xT , εT−1, xT−1, . . . , ε1, x1) =
T∑

t=1

lt (8)

with

lt = −1

2

[
ln(h̄t) + ln(τ t) +

ε2t
h̄tτ t

]
. (9)

2.3.1 First derivatives

In the following, we consider the unobserved log-likelihood function. We define the average

score vector evaluated under the null and at the true GARCH parameters as

D∞(η0) =


 D∞

η
(η0)

D∞
π
(η0)


 =

1

T

T∑

t=1

d∞
t (η0) =

1

T

T∑

t=1


 d∞

η,t(η0)

d∞
π,t(η0)


 ,

where d∞
η,t(η0) = ∂l∞t /∂η

∣∣
η0,π=0

and d∞
π,t(η0) = ∂l∞t /∂π

∣∣
η0,π=0

. Next, we derive explicit

expressions for d∞
η,t(η0) and d∞

π,t(η0). First, consider the partial derivative of the log-

likelihood with respect to η:

∂l∞t
∂η

=
1

2

[
ε2t

h̄∞t τ t
− 1

](
1

h̄∞t

∂h̄∞t
∂η

+
1

τ t

∂τ t
∂η

)
(10)

with ∂τ t/∂η = (∂ft/∂π
′xt)(∂xt/∂η)

′π. Under the null hypothesis, the long-term com-

ponent reduces to unity and the short term component simplifies to h∞t = h̄∞t |π=0 =

ω + αε2t−1 + βh∞t−1. Note that h∞t corresponds to the standard expression of the condi-

tional variance in a GARCH(1,1). We then distinguish between

d∞
η,t(η) =

∂l∞t
∂η

∣∣∣∣
π=0

=
1

2

[
ε2t
h∞t

− 1

]
y∞
t (11)
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with

y∞
t =

1

h̄∞t

∂h̄∞t
∂η

∣∣∣∣
π=0

=
1

h∞t

∞∑

i=0

βis∞t−i, (12)

where s∞t = (1, ε2t−1, h
∞
t−1)

′, and the corresponding quantity which is evaluated at η0:

d∞
η,t(η0) =

1

2

[
ε2t
h∞0,t

− 1

]
y∞
0,t, (13)

with h∞0,t = ω0 + α0ε
2
t−1 + β0h

∞
0,t−1 and y∞

0,t = (h∞0,t)
−1
∑∞

i=0 β
i
0s

∞
0,t−i.

The partial derivative with respect to π leads to:

∂l∞t
∂π

=
1

2

[
ε2t

h̄∞t τ t
− 1

](
1

h̄∞t

∂h̄∞t
∂π

+
1

τ t

∂τ t
∂π

)
, (14)

whereby the partial derivative of h̄∞t is given by

∂h̄∞t
∂π

= −α
∞∑

j=0

βj
ε2t−1−j

τ 2t−1−j

∂τ t−1−j

∂π
. (15)

Since ∂τ t/∂π = (∂f/∂π′xt)(xt + (∂xt/∂π)
′
π), we have ∂τ t/∂π|π=0 = f ′

0xt and, hence,

d∞
π,t(η) =

∂l∞t
∂π

∣∣∣∣
π=0

=
1

2

[
ε2t
h∞t

− 1

]
r∞t (16)

with

r∞t = f ′
0

(
xt − α

1

h∞t

∞∑

j=0

βjε2t−1−jxt−1−j

)
. (17)

Similarly as before, the corresponding expression evaluated at η0 is given by:

d∞
π,t(η0) =

1

2

[
ε2t
h∞0,t

− 1

]
r∞0,t (18)

with

r∞0,t = f ′
0

(
xt − α0

1

h∞0,t

∞∑

j=0

βj
0ε

2
t−1−jxt−1−j

)
. (19)

In summary, we have

D∞(η0) =
1

T

T∑

t=1

d∞
t (η0) =

1

2T

T∑

t=1

[
ε2t
h∞0,t

− 1

]
 y∞

0,t

r∞0,t


 . (20)
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Using that under H0: E[ε
2
t/h

∞
0,t] = E[Z2

t ] = 1, it follows that E[d∞
t (η0)|Ft−1] = 0 and

Var[d∞
t (η0)] = Ω =


 Ωηη Ωηπ

Ωπη Ωππ




=


 E[d∞

η,t(η0)d
∞
η,t(η0)

′] E[d∞
η,t(η0)d

∞
π,t(η0)

′]

E[d∞
π,t(η0)d

∞
η,t(η0)

′] E[d∞
π,t(η0)d

∞
π,t(η0)

′]




=
1

4
(κZ − 1)


 E[y∞

0,t(y
∞
0,t)

′] E[y∞
0,t(r

∞
0,t)

′]

E[r∞0,t(y
∞
0,t)

′] E[r∞0,t(r
∞
0,t)

′]


 . (21)

In the proof of Theorem 1 we will show thatΩ is finite and positive definite. This will allow

us to apply a central limit theorem for martingale difference sequences to 1√
T

∑T
t=1 d

∞
t (η0).

2.3.2 Second derivatives

In the subsequent analysis we also make use of the following second derivatives:

∂d∞
η,t(η)

∂η′ = −1

2

ε2t
h∞t

y∞
t (y∞

t )′ +
1

2

[
ε2t
h∞t

− 1

]
∂y∞

t

∂η′ (22)

and

∂d∞
π,t(η)

∂η′ = −1

2

ε2t
h∞t

r∞t (y∞
t )′ +

1

2

[
ε2t
h∞t

− 1

]
∂r∞t
∂η′ . (23)

We then define

Jηη = −E

[
∂d∞

η,t(η0)

∂η′

]
=

1

2
E[y∞

0,t(y
∞
0,t)

′] (24)

and

Jπη = −E

[
∂d∞

π,t(η0)

∂η′

]
=

1

2
E[r∞0,t(y

∞
0,t)

′]. (25)

Note that d∞
η,t(η0) corresponds to the score of observation t in a standard GARCH(1,1)

model and ∂d∞
η,t(η0)/∂η

′ to the respective second derivative. Under Assumptions 3 and 4,

it then directly follows from the results for the pure GARCH model in Francq and Zaköıan

(2004) that Jηη is finite and positive definite. Finally, note that Ωηη = 1
2
(κZ − 1)Jηη

and Ωπη = 1
2
(κZ − 1)Jπη. If Zt is normally distributed (i.e. the quasi-log-likelihood is

correctly specified), then κZ = 3 and Ωηη = Jηη and Ωπη = Jπη, respectively.
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2.4 The LM Test Statistic

The LM test statistic will be based on the observed quantity Dπ(η̂) =
1
T

∑T
t=1 dπ,t(η̂),

where η̂ is the QMLE of η0 estimated under the null. We derive the asymptotic dis-

tribution of the test statistic in three steps. In the first step, we derive the asymptotic

normality of the average score evaluated at η0. We then show that the lower part of the

score evaluated at the QMLE can be related to the average score evaluated at η0 in the

following way:
√
TD∞

π
(η̂) = [JπηJ

−1
ηη

: I]
√
TD∞(η0) + oP (1) (26)

In the final step it is necessary to show that the observed quantity
√
TDπ(η̂) has the same

asymptotic distribution as
√
TD∞

π
(η̂). The LM statistic follows the usual χ2 distribution.

Since the test statistic is based on the QMLE of η0, we can rely on the following

result from Francq and Zaköıan (2004). If Assumptions 3 and 4 hold and the model is

estimated under the null, the QMLE of the GARCH(1,1) parameters will be consistent

and asymptotically normal:

√
T (η̂ − η0)

d−→ N (0, (κZ − 1)(E[y∞
0,t(y

∞
0,t)

′])−1) (27)

Remark 1. In principle, we can relax the assumption that Zt is i.i.d. Following Escan-

ciano (2009) and Francq and Thieu (2015), the asymptotic normality of the QMLE can be

also obtained under the weaker assumption that Zt is strictly stationary and ergodic with

E[Zt|Ft−1] = 0 and E[Z2
t |Ft−1] = 1. This allows for a time-varying conditional kurtosis

of Zt. Under this weaker assumption the asymtotic distribution of the QMLE is given by

√
T (η̂ − η0)

d−→ N (0,J−1
ηη
Ω̃ηηJ

−1
ηη
), (28)

where Ω̃ηη = E[(E[Z4
t |Ft−1] − 1)y∞

0,t(y
∞
0,t)

′]. Clearly, if E[Z4
t |Ft−1] is constant, (28) sim-

plifies to (27).

In the following theorem, we derive the asymptotic distribution of the average score

evaluated at η0. In order to ensure the finiteness of the covariance matrix of the average

score, we assume that xt has a finite fourth moment. Additionally, we require that the

long-term component is minimal in the sense that no equivalent representation which is

of lower order exists.

11



Assumption 5. xt is strictly stationary and ergodic with E[|xt|4] < ∞. There exist no

a1, . . . , aS for the long-term component (4) such that
∑K

k=1 π0kxt−k =
∑S

s=1 asxt−s with

S < K.

By Assumption 4, the explanatory variable xt is assumed to be weakly exogenous,

i.e. E[Zt|xt] = 0. This allows for explanatory variables from ‘outside the model’, but

also covers the case that xt is ‘generated within the model’. In the empirical literature a

variety of explanatory variables from outside the model – such as GDP growth, the term

spread, the unemployment rate or disagreement among forecasters – has been used (see

Engle et al., 2013, or Conrad and Loch, 2015a). Wang and Ghysels (2015) show that the

GARCH-MIDAS model with rolling window realized volatility as explanatory variable can

be rewritten such that xt = ε2t , while the specification of Lundbergh and Teräsvirta (2002)

selects xt = ε2t/h0t which is generated inside the model (see Section 2.5). For testing the

simple GARCH model against the former model, Assumption 5 requires that under the

null the observed process has a finite eighth moment: E[|εt|8] < ∞. The corresponding

constraints on the parameters of the GARCH(1,1) are provided in Francq and Zaköıan

(2010), equation (2.54).

Theorem 1. If Assumptions 3-5 hold, then

√
TD∞(η0)

d−→ N (0,Ω). (29)

In the proof we use the fact that Ωηη is finite and positive definite which follows from

Theorem 2.2 in Francq and Zaköıan (2004).

Next, we consider the asymptotic distribution of the relevant lower part of the score

vector evaluated at η̂. As an intermediate step, we show that Jπη can be consistently

estimated by

− 1

T

T∑

t=1

∂d∞
π,t(η̃)

∂η′ ,

where η̃ = η0 + oP (1). The result is presented in Proposition 1 in Appendix A. This

requires the following Assumption 6 which ensures that Jπη(η) is finite with a uniform

bound for all η ∈ Θ.

Assumption 6. E[|εt|4(1+s)] <∞ for some s ∈ (0, 1).

12



Note that in general ε2t = h̄∞0t τ 0tZ
2
t depends on η0 and π0. Under the null, ε

2
t = h∞0,tZ

2
t

depends on η0 only. In the proof of Proposition 1 we will use this observation to argue

that E[sup
η
|εt|4(1+s)] = E[|εt|4(1+s)].

Theorem 2. If Assumptions 3-6 hold, then

√
TD∞

π
(η̂)

d−→ N (0,Σ), (30)

with

Σ = Ωππ − JπηJ
−1
ηη
Ω′

πη

=
1

4
(κZ − 1)

(
E[r∞0,t(r

∞
0,t)

′]− E[r∞0,t(y
∞
0,t)

′]
(
E[y∞

0,t(y
∞
0,t)

′]
)−1

E[y∞
0,t(r

∞
0,t)

′]
)
. (31)

The actual test statistic will be based on the observed quantity Dπ(η̂). The following

theorem states the test statistic and its asymptotic distribution.

Theorem 3. If Assumptions 3-6 hold, then

LM = TDπ(η̂)
′Σ̂−1Dπ(η̂)

=
1

4T

(
T∑

t=1

[
ε2t

ĥt
− 1

]
r̂t

)′

Σ̂−1

(
T∑

t=1

[
ε2t

ĥt
− 1

]
r̂t

)
a∼ χ2(K) (32)

where η̂ = (ω̂, α̂, β̂)′ is the vector of parameter estimates from the model under the null,

ĥt = ω̂ + α̂ε2t−1 + β̂ĥt−1, r̂t = f ′
0(xt − α̂/ĥt

∑t−1
j=0 β̂

j
ε2t−1−jxt−1−j) and

Σ̂ =
1

4T
̂(κZ − 1)




T∑

t=1

r̂tr̂
′
t −

T∑

t=1

r̂tŷ
′
t

(
T∑

t=1

ŷtŷ
′
t

)−1 T∑

t=1

ŷtr̂
′
t


 (33)

with ̂(κZ − 1) = 1/T
∑T

t=1(ε
2
t/ĥt − 1)2 is a consistent estimator of Σ.

Note that the LM test statistic does not depend on the constant f ′
0 because the (f ′

0)
2

in the ‘numerator’ and the ‘denominator’ of the test statistic cancels out.

Remark 2. The covariance matrix Σ̂ in Theorem 3 takes the same form as in Lundbergh

and Teräsvirta (2002). The fact that we can factor out the term ̂(κZ − 1) follows from the

assumption that Zt is i.i.d. A modified version of the test statistic can be obtained under

the weaker assumption discussed in Remark 1. However, this would require to further

strengthen the assumptions on xt and εt.
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Essentially, the test statistic checks for a correlation between the squared standardized

residuals from the model estimated under the null and the elements of the K-dimensional

vector r̂t. In empirical applications, the true lag length is unknown. Although the LM

statistic can be easily computed for a variety of K’s, our simulation experiments have

shown that for monotonically decaying weights, π0,k, choosing K = 1 is sufficient in order

to detect whether xt has an effect on long-term volatility or not. Given that in applications

the explanatory variable is likely to be persistent, this result is not surprising because for

persistent xt all entries of r̂t will basically carry the same information so that choosing

K = 1 is sufficient.5

Moreover, it is straightforward to construct a regression version of our test (see also

Lundbergh and Teräsvirta, 2002). The corresponding test statistic is given by

LM = T
SSR0 − SSR1

SSR0
, (34)

where SSR0 =
∑T

t=1(ε
2
t/ĥt − 1)2 and SSR1 is the sum of squared residuals from a re-

gression of (ε2t/ĥt − 1) on r̂′t and ŷ′
t, where ŷt is obtained by inserting the respective

estimated quantities in equation (12). Hence, LM is simply T times the uncentered R2

of the regression.

Remark 3. Wang and Ghysels (2015) consider a specification for f(·) which is linear in

the lagged explanatory variable. In this case the long-term component is specified as

f(π′xt) = 1 + π′xt (35)

which again ensures that f(0) = 1. However, this specification requires π ≥ 0 as well as

non-negative explanatory variables, i.e. xt ≥ 0 almost surely, in order to ensure the pos-

itivity of the conditional variance. Although the alternative hypothesis becomes one-sided

in this case, i.e. is given by H1 : π0 6= 0, π0 ≥ 0, this does not affect the asymptotic

distribution of our test statistic which is still χ2(K). This result directly follows from the

discussion in Francq and Zaköıan (2009) who consider testing the nullity of coefficients

in GARCH processes. While the asymptotic distribution of the Lagrange multiplier test

remains the same (because the score vector is asymptotically Gaussian under the null),

Francq and Zaköıan (2009) show that the asymptotic distribution of the Wald and Like-

lihood ratio test would no longer be χ2 since the asymptotic distribution of the QMLE of

5In the extreme case that xt is constant, r̂t collapses to a vector of zeros.
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the unrestricted model is non-standard under the null hypothesis. However, as suggested

by Demos and Sentana (1998) it may be possible to construct a one-sided version of our

LM test that would be more powerful.

Remark 4. In principle, we could also use our test for testing the joint significance of

several explanatory variables. In this case xt would not include the lagged values of xt

but different explanatory variables, say, xt = (vt−1, wt−1, . . .) and K would represent the

number of different explanatory variables.

Finally, it is interesting to consider two special cases that are nested within our frame-

work when there are no GARCH effects, i.e. when α0 = β0 = 0 and h̄∞0t = ω0. In this case,

the model under H0 has constant conditional and unconditional variance equal to σ2
0 = ω0.

Under the alterative, the conditional variance is given by Var[εt|Ft−1] = σ2
0τ t. Without

GARCH effects and under H0, the average score in equation (20) can be rewritten as

D∞(η0) =
1

2T

T∑

t=1

[
ε2t
σ2
0

− 1

]
 σ−2

0

f ′
0xt


 . (36)

Then, the regression-based test simplifies to regressing the squared returns on a constant

and xt and to computing TR2 which resembles the Godfrey (1978) test for multiplicative

heteroskedasticity. Finally, the Engle (1982) test for ARCH effects is obtained if we choose

xt−k = ε2t−k.

2.5 Relation to LM test of Lundbergh and Teräsvirta (2002)

Next, we compare our test statistic to the Lundbergh and Teräsvirta (2002) test for

misspecification in GARCH models. Their test is based on the following specification

εt =
√
h∞0t ξ0t =

√
h∞0t τ 0tZt, where h

∞
0t is defined as before and τ 0t = 1 + π′xt, i.e. they

assume that the long-term component is linear. Lundbergh and Teräsvirta (2002) make

the specific choice of xt = ξ20t = ε2t/h
∞
0t for the explanatory variable in the long-term

component. Because under this assumption ξ0t =
√
τ 0tZt follows an ARCH(K), Lund-

bergh and Teräsvirta (2002) refer to this specification as ‘ARCH nested in GARCH’

and test the null hypothesis H0 : π0 = 0. Although the ‘ARCH nested in GARCH’

is remarkably similar to our model, there is an important conceptual difference. Since

the short-term component is based on h∞0t (instead of h̄∞0t ), the squared observation ε2t−1
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is not divided by τ 0,t−1. Because of this,
√
h∞0tZt follows a GARCH(1,1) process un-

der the null but not under the alternative.6 Moreover, it follows that ∂h∞t /∂π = 0

and, hence, in the Lundbergh and Teräsvirta (2002) setting equation (19) reduces to

r∞0,t = (ε2t−1/h
∞
0,t−1, ε

2
t−2/h

∞
0,t−2, . . . , ε

2
t−K/h

∞
0,t−K)

′. Thus, their LM test statistic is based

on [
ε2t

ĥt
− 1

]
r̂LTt , (37)

where ĥt = ω̂ + α̂ε2t−1 + β̂ĥt−1 and r̂LTt has entries ε2t−k/ĥt−k, k = 1, . . . , K. Intuitively,

equation (37) is used to test whether the squared standardized returns are still correlated.

In this sense, the test is intended to be a very general misspecification test with omitted

ARCH under the alternative (instead of a well-specified alternative).

In the Section 3, we will compare the ‘ARCH nested in GARCH’ test of Lundbergh

and Teräsvirta (2002) to our new test in situations in which the true data generating

process (DGP) has a two-component structure. We implement a regression-based version

of the test as in equation (34) but with r̂LTt instead of r̂t. We denote the test statistic

by LMLT . In addition, we consider a modified version of the Lundbergh and Teräsvirta

(2002) test, in which we allow for a general regressor xt. In this case, equation (19) is

simply given by r∞0,t = xt = r̂LT,mod
t . We denote the corresponding test statistic LMLT,mod.

Since r̂t − r̂LT,mod
t = α̂/ĥt

∑t−1
j=0 β̂

j
ε2t−1−jxt−1−j , our new test, LM , and LMLT,mod can

be expected to perform similarly if, for example, α̂ is small. On the other hand, we

expect that our test will have better power properties than the modified Lundbergh and

Teräsvirta (2002) test when the ARCH effect is strong.7

2.6 Mixed-Data Sampling

As discussed in Section 2.2, the two-component model is often applied in settings where

the explanatory variable is observed at a lower frequency than the daily returns. In order

to capture such a setting we have to slightly adapt our notation. As before, we denote

6The observation that h∞
0t does not follow a GARCH process under the alternative is closely related

to the argument in Halunga and Orme (2009) that the alternative models considered in Lundbergh and

Teräsvirta (2002) are not “recursive” in nature.
7Amado and Teräsvirta (2015) discuss testing the null of no remaining ARCH effects in multiplicative

time-varying GARCH models. Our test is closely related to the model they discuss in Section 4.4 of their

paper. However, they provide no asymptotic theory for the test with exogenous explanatory variables.
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by xt the explanatory variable, but now t refers to, for example, a monthly or quarterly

frequency. We denote the daily returns by εi,t, where i = 1, . . . ,M refers to the M days

within each month/quarter.8 Equation (1) can then be rewritten as

εi,t =
√
h̄∞0,i,tτ 0,tZi,t, (38)

whereby Assumption 4 now holds for Zi,t with Fi,t defined accordingly. Note that the

long-term component has an index t only, since it is constant within each month/quarter.

On the other hand, the GARCH component varies at the daily frequency. We propose

two versions of the test for the mixed-frequency case:

Alternative 1: Since τ 0,t varies at the lower frequency only, we calculate the volatil-

ity adjusted low-frequency returns ε̃t from the ‘deGARCHed’ high-frequency returns as

follows:

ε̃t =
M∑

i=1

εi,t√
h̄∞0,i,t

=
√
τ 0,tZt, (39)

where Zt =
∑M

i=1 Zi,t is i.i.d. with mean zero and variance M by Assumption 4. This

leads to the score vector:

dt(η0) =
T∑

t=1

(
ε̃2t
M

− 1

)
 M−1

f ′
0xt


 (40)

Thus, if ε̃t were observable, we could implement the test by simply regressing ε̃2t on

a constant and xt. Again, this would be a test for heteroscedasticity in the spirit of

Godfrey (1978). To actually implement the test, we need to replace the unobservable ε̃t

by

ˆ̃εt =

M∑

i=1

εi,t√
ĥi,t

, (41)

where the ĥi,t are obtained by estimating the GARCH model under the null for the daily

data. However, a simple Taylor expansion shows that ˆ̃εt has measurement error due to

8For simplicity in the notation, we assume that each month/quarter has the same number of (trading)

days.
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pre-estimating h̄∞0,i,t:

ˆ̃εt =
M∑

i=1

εi,t√
ĥi,t

=
M∑

i=1

εi,t√
h̄i,t




1

1 +

√
ĥi,t−

√
h̄∞

0,i,t√
h̄∞

0,i,t




=

M∑

i=1

εi,t√
h̄∞0,i,t


1−

√
ĥi,t −

√
h̄∞0,i,t√

h̄∞0,i,t

+ oP (
√
T )


 ≈ ε̃t +Wt,

where Wt is mean zero but has non-zero variance. Higher-order terms are negligible for

the test performance. Thus, tests based on the critical values from the χ2-distribution

(derived in Theorem 3) will be undersized (see also Li and Mak, 1994). However, it is

straightforward to simulate the correct distribution of the test statistic based on ˆ̃εt.

Alternative 2: The second alternative is based on what we call the volatility-adjusted

realized variance which we define as the monthly/quarterly realized variance of the de-

GARCHed daily returns. As we will discuss below, this approach is closely related to the

empirical literature on predictive regressions for financial volatility. Consider again the

deGARCHed daily returns, but now sum the squares:

R̃V t =

M∑

i=1

ε2i,t
h̄∞0,i,t

= τ 0,t

M∑

i=1

Z2
i,t = τ 0,tZ̃t, (42)

where R̃V t denotes the monthly/quarterly realized variance of the deGARCHed returns.

To simplify the analysis further, we assume that the long-term component is given by

τ 0,t = exp(πxt). This Assumption is plausible since it is the most common specification

of τ 0,t in the empirical literature. It is then natural to consider the log of equation (42)

as a regression model:

ln(R̃V t) = πxt + ln(Z̃t) = c̃+ πxt + ζ̃t, (43)

where c̃ = E[ln(Z̃t)] and ζ̃t = ln(Z̃t)− c̃. Note that by Assumption 4 the innovation ζ̃t is

i.i.d. This is, under H0 : π = 0 the volatility-adjusted realized variance ln(R̃V t) should

be unpredictable. Of course, we have to replace R̃V t in equation (43) with the estimate
̂̃
RV t =

∑M
i=1 ε

2
i,t/ĥ

∞
t in order to obtain an estimable version. Again, this will introduce

measurement error.
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Equation (43) is very much in analogy to the predictive regression model often used

when analyzing the link between financial volatility and macro conditions (see Paye, 2012,

Christiansen et al, 2012, Conrad and Loch, 2015a, and others). The important difference

is that predictive regressions directly try to explain the realized variance, i.e. are based

on regressions of the following type:

ln(RVt) = c + πxt + ζt (44)

where RVt =
∑M

i=1 ε
2
i,t. From equation (38) it follows that the innovation in equation (44)

is given by ζ t = ln(
∑M

i=1 h̄
∞
0,itZ

2
i,t) − E[ln(

∑M
i=1 h̄

∞
0,itZ

2
i,t)]. Note that ζ t is a low-frequency

process that corresponds to the sum of a squared high-frequency GARCH process. That is,

while ζ̃t is i.i.d., we can expect that ζt has a higher variance and is strongly autocorrelated.

This intuition is in line with the fact that ln(RVt) is typically found to be highly persistent.

These considerations suggest that the relationship between xt and financial volatility is

more difficult to detect when using equation (44) rather than equation (43) as a regression

model.

Finally, note that in predictive regressions typically also the lagged realized variance

is included as an additional explanatory variable. This leads to the regression

ln(RVt) = c+ πxt + ρ ln(RVt−1) + ζt. (45)

Since the additional regressor ln(RVt−1) provides a parsimonious (but noisy) summary of

the information included in xt−1 and requires to estimate only one additional parameter,

it will reduce the relevance of including the whole xt vector in the regression. This might

explain, why in the predictive regressions literature xt is often found to be insignificant

once the lagged realized volatility is controlled for. The point that predictive regressions

like in equation (45) might be problematic has been made already by Engle et al. (2013)

who argue that ln(RVt−1) is a noisy measure of the true unobservable long-term component

which creates problems due to measurement error on both the left as well as the right

hand sight of the equation.

3 Simulation

In this section, we examine the finite sample behavior of the proposed test in a Monte-

Carlo experiment. We simulate return series with T = 1000 observations and use M =
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1000 Monte-Carlo replications. The innovation Zt is assumed to be either standard nor-

mally distributed or (standardized) t-distributed with seven degrees of freedom. In order

to consider a realistic example under the alternative, we will base the long-term compo-

nent on actual data. As an explanatory variable, we use the squared daily VIX index,

V IXt, for the period October 2010 to October 2014.9 The sample is chosen such that

T = 1000. In addition, we construct monthly and quarterly rolling window versions of

the squared VIX as V IX
(N)
t = 1

N

∑N−1
j=0 V IXt−j , with N = 22 and N = 65. Figure 1

shows the evolution of the VIX and its rolling window versions over the sample period.

The spikes in the third quarter of 2011 correspond to the financial turmoil during the

European sovereign debt crisis.
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Figure 1: The figure shows the evolution of V IXt (blue), V IX
(22)
t (red) and V IX

(65)
t

(green) for the period October 2010 to October 2014. The three variables are presented

in daily units.

3.1 Size properties

We first discuss the size properties of the different versions of the test statistic. Three

alternative GARCH(1,1) specifications are considered. These three specifications reflect

different degrees of persistence (Low: L, Moderate: M, High: H) in the conditional

variance, whereby we measure persistence by α0 + β0. We keep β0 fixed at 0.9 and

9More specifically, we define V IXt as 1/365 times the squared VIX index so that the squared annu-

alized observations are transformed to daily units.

20



increase α0 from 0.05 to 0.09. ω0 is always chosen such that under the null σ2
0 = 1.

L: h̄0t = 0.05 + 0.05
ε2t−1

τ 0,t−1
+ 0.90h̄0,t−1

M: h̄0t = 0.03 + 0.07
ε2t−1

τ 0,t−1

+ 0.90h̄0,t−1

H: h̄0t = 0.01 + 0.09
ε2t−1

τ 0,t−1
+ 0.90h̄0,t−1

Table 1: Empirical size.

Zt ∼ N (0, 1) Zt ∼ t(7)

L M H L M H

Panel A: xt = ε2t/ĥt

1% 0.9 1.2 1.3 0.7 0.9 0.7

LM 5% 4.6 5.0 5.2 3.1 3.7 3.9

10% 9.0 9.7 10.1 7.2 7.4 7.3

1% 0.9 1.2 1.3 0.9 1.1 1.1

LMLT 5% 5.2 5.2 5.1 3.4 3.8 3.9

10% 10.2 10.0 10.6 6.7 7.1 7.4

Panel B: xt = V IXt

1% 1.9 2.2 1.7 2.3 2.6 2.4

LM 5% 6.4 6.0 5.7 6.0 6.1 5.5

10% 11.2 11.4 11.6 11.4 11.0 9.5

1% 2.0 2.1 2.3 1.1 1.2 1.9

LMLT,mod 5% 7.0 7.1 7.9 5.5 6.4 7.1

10% 12.2 12.8 13.8 11.3 12.0 12.6

Notes: Entries are rejection rates in percent over the 1000 replications

at the 1%, 5% and 10% nominal level. The model for the conditional

variance is a GARCH(1,1) with β0 = 0.90. L, I and H refer to GARCH

models with low (α = 0.05), moderate (α = 0.07) and high (α = 0.09)

persistence. ω is chosen such that σ2
0 = 1. All test statistics are based

on K = 1.

To implement the test, we have to specify the explanatory variable. In Panel A of

Table 1 we test for remaining ARCH effects by choosing xt = ε2t/ĥt and in Panel B we
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choose xt to be equal to the VIX index. We report the empirical size for the LM test

given in equation (32) as well as for the original, LMLT , and modified, LMLT,mod, test

statistics of Lundbergh and Teräsvirta (2002). Also, we have to choose the dimension of

r̂t and r̂LTt (r̂LT,mod
t ), respectively. We opt for a dimension of K = 1.10 We first discuss

the results when testing for remaining ARCH effects. As Panel A of Table 1 shows, the

empirical size of both versions of the test statistic is very close to the nominal size when

Zt is normally distributed. In case of Student-t distributed errors, the two test statistics

are slightly undersized. For the LMLT test statistic, this is an observation also made in

Lundbergh and Teräsvirta (2002) and Halunga and Orme (2009). As panel B shows, both

tests are modestly oversized when the VIX is used as an explanatory variable.

3.2 Power properties

We simulate the model under the alternative using the exponential specification given by

τ 0,t = exp(π′
0xt). (46)

Three alternative weighting schemes π0 are considered. The first one includes only the

first lag of xt with a weight of π0,1 = 0.3. We refer to this weighting scheme as one with

immediate (I) decay. The second and third weighting scheme are shown in Figure 2. The

red and blue lines represent weights that either have a fast (F) or a slow (S) decay. The

second and third weighting scheme are scaled such that their weights add up to 0.3.11

Table 2 presents size-adjusted rejection rates that were obtained from the Monte-Carlo

simulations. The LM test statistics are based on r̂t with xt ∈ {V IXt, V IX
(22)
t , V IX

(65)
t }.

We present two versions of the Lundbergh and Teräsvirta (2002) test. The modified

Lundbergh and Teräsvirta (2002) test, LMLT,mod, is based on r̂LT,mod
t but uses the same

xt as in LM . As before, LMLT is based on r̂LTt with xt = ε2t/ĥt and, hence, tests for

‘ARCH nested in GARCH’. In order to analyze to what extent the rate of decay affects

the power, we simulate processes under the three alternative weighting schemes. For all

three test statistics we choose K = 1, i.e. the tests are based on the first lag of xt only.

10The results presented below are robust with respect to increasing the dimension of r̂t and r̂LT
t

(r̂LT,mod
t ). The corresponding tables are available upon request.
11The weights were generated using a Beta weight scheme. For a detailed discussion of the Beta

weighting scheme see Ghysels et al. (2006).

22



.00

.04

.08

.12

.16

.20

.24

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2: Alternative weighting schemes π0,k with fast (F; red) and slow (S; blue) decay.

Thus, the results in Table 2 illustrate the performance of the test statistics when K is

correctly chosen but also when K is smaller than the true lag length.

We first consider the squared VIX as the explanatory variable, i.e. we choose xt =

V IXt. In the GARCH equation we employ models with α0 = 0.09 (high persistence)

and α0 = 0.07 (moderate persistence). Besides the size-adjusted power for the different

weighting schemes, we also report the variance ratio: V R = Var(ln(τ 0t))/Var(ln(τ 0th̄0t)),

which reflects the fraction of the variance of the log conditional variance that is due to the

variance of the log long-term component.12 For example, for α0 = 0.09 in combination

with an immediately decaying weighting scheme, 15.6% of the total conditional variance

is due to the long-term component. When α0 is decreased to 0.07, the V R increases to

35.5%. Intuitively, decreasing α0, means reducing the variability with which the short-

term component fluctuates around τ 0t.

First, consider the case where α0 = 0.09. For the immediately decaying weighting

scheme, the LM test rejects the null hypothesis in 74.4% of the simulations at the nominal

5% level. In contrast, the rejection rate of the modified Lundbergh and Teräsvirta (2002)

test, LMLT,mod, is 42.2% only. Next, we consider the weighting schemes with fast and slow

decay. In these cases, the long-term component becomes less variable and, hence, more

difficult to detect. Consequently, the power of all three tests deteriorates. Nevertheless,

the LM still has considerably higher power than LMLT,mod. When α0 is decreased to

12This variance ratio has been employed in Conrad and Loch (2015a) as a measure for the relevance

of the long-term component. For example, using the realized volatility as an explanatory variable, they

find a V R of roughly 13% for data on the S&P 500 for the 1973 to 2010 period.
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Table 2: Empirical size-adjusted power for exponential long-term component.

xt V IXt V IX
(22)
t V IX

(65)
t

ω01 = 1, ω02 = 10

α0 = 0.09 α0 = 0.07 α0 = 0.09

weighting scheme I F S I F S I I

1% 55.4 51.1 27.9 60.3 57.1 34.1 12.6 9.2

LM 5% 74.4 71.0 49.9 79.9 77.3 59.4 36.8 19.9

10% 81.7 79.3 62.0 88.7 87.3 73.0 49.8 32.2

1% 20.8 18.8 12.9 44.3 41.5 30.2 5.9 3.4

LMLT,mod 5% 42.2 39.9 31.2 70.9 69.5 59.0 15.6 11.1

10% 55.7 52.8 42.5 82.2 80.7 73.0 22.1 18.6

1% 0.7 0.9 0.8 0.7 0.8 0.8 0.9 0.8

LMLT 5% 5.6 5.6 5.9 5.9 5.6 5.6 5.0 4.7

10% 9.5 10.1 10.8 11.2 11.2 11.2 9.4 9.3

V R 15.6 15.5 14.8 35.5 35.2 34.1 14.7 12.0

Notes: The table reports the size-adjusted power. The specification of the long term

component is given by τ0,t = exp(π′
0xt) with weighting schemes with immediate

(I), fast (F) and slow (S) decay. The GARCH parameters are β0 = 0.9 and ω0 =

1−α0−β0. Innovations Zt are standard normal distributed. The variance ratio, V R =

Var(ln(τ0t))/Var(ln(τ0th̄0t)), is the fraction of the variance of the log conditional

variance that is due to the variance of the log long-term component. All test statistics

are based on K = 1.

0.07, this increases the power of both tests. For example, for the immediately decaying

weighting scheme the size-adjusted power at the nominal 5% level is now 79.9% for the

LM test. Clearly, with lower α0 and thus less volatile GARCH component, the long-term

component can be detected more easily. As before, having more slowly decaying weights,

i.e. increasing the smoothness of the long-term component, reduces the power of the tests.

In line with the arguments at the end of Section 2.5, the difference in the power of the LM

and LMLT,mod statistics is less strong when α0 is decreased to 0.07. Finally, the last two

columns of Table 2 show the rejection rates for the case that the long-term component is

based on the monthly and quarterly rolling window versions of the squared VIX. Then,
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even for the immediately decaying weighting scheme the long-term components are very

smooth and the lowest V R’s are observed. As expected, the size-adjusted powers are the

lowest for these two cases. Note that in all eight scenarios the original version of the

Lundbergh and Teräsvirta (2002) test, LMLT , has no power to detect deviation from the

null. This is not surprising since LMLT is searching for an omitted ARCH component

and, hence, is simply ‘searching in the wrong place’.

In summary, the size-adjusted power of the newly proposed test, LM , is higher the

more volatile the long-term component is and the less volatile the short-term component

fluctuates around the long-term component (i.e. the lower α0 is).

We performed the same analysis as in Table 2 for the case of Student-t distributed

innovations Zt (see Table 6 in Appendix B.1). As the table shows, for each specification the

t distributed innovations decrease the V R in comparison to the one that we obtained for

normally distributed innovations. The lower V R’s then lead to a loss of power, i.e. under t

distributed innovations the long-term component is more difficult to detect. However, all

qualitative results regarding the different versions of the test statistics remain unchanged.

Additionally, we performed several robustness checks.

Sample size: Given that a sample size of T = 1000 is relatively modest for applica-

tions in financial econometrics, the power of the LM test is very satisfactory. However,

in order to evaluate the effect of increasing the sample size on the power, we performed

the same simulations as before but with T = 2000. As expected, in the larger sample the

power of LM and LMLT,mod increased substantially under all scenarios.

Choice of K: As a further robustness check, we also performed simulations in which

we increased K such that it approaches the true lag length of the fast and slow decaying

weighting schemes. Given the smoothness of our explanatory variable (the first order

autocorrelation of V IXt is 0.95), this did not lead to significant gains in power relative

to simply choosing K = 1 (see also the discussion below Theorem 3).

Linear long-term component: In order to evaluate the effect of different choices for

f(·) on the power of the test statistic, we replaced the exponential specification of τ 0,t with

the following linear specification: τ 0t = 1 +
∑K

k=1 π0kxt−k. Besides the exponential one,

the linear specification is most often used in empirical applications. The corresponding

results for normally and student-t distributed innovations can be found in Tables 7/8 in

Appendix B.2 and, again, qualitatively confirm our previous findings. Note that the linear
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specification leads to lower variance ratios which explains the difference in power.

Alternative specification under H1: Under the alternative, we also simulated the

additive two-component GARCH(1,1) model of Engle and Lee (1999) and applied all

three tests. However, neither the original LMLT test nor LM and LMLT,mod detected a

deviation from the null in this case. Since the additive two-component GARCH(1,1) has a

GARCH(2,2) representation, this result is not surprising. Even thought the GARCH(1,1)

under the null is misspecified it might adequately capture the volatility persistence of the

GARCH(2,2) by choosing α and β such that the sum is close to one. Hence, the tests that

check for multiplicative misspecification search in the wrong place and, consequently, do

not reject.

4 Empirical Application

We consider two empirical applications. The first one deals with daily, weekly and monthly

return data that are combined with explanatory variables which are available at the same

daily frequency. The second one applies the test in a mixed-frequency setting. For both

applications we use log-returns on the S&P 500.

4.1 Daily, Weekly and Monthly Data

First, we apply our test to seven variables that are observed at a daily frequency and check

whether these variables might be useful in a two-component GARCH specification. The

first explanatory variable is the squared VIX, V IX
(1)
t . We construct two measures of re-

alized variance. The first one is simply the daily squared return, RV
(1)
t = ε2t . The second

one is the daily realized variance, RV
(1)

t , defined as the sum of the squared five-minute

returns within each day. This measure is obtained from the Oxford-Man Institute’s “re-

alised library”. While the VIX and realized volatility measure stock market uncertainty,

we use the Baker et al. (2016) daily index, EPU
(1)
t , as a measure of general economic

policy uncertainty. The last three variables are meant to proxy for macroeconomic con-

ditions. Here, we use the ADS Business Conditions Index, ADS
(1)
t , suggested by Aruoba

et al. (2009) as well as the surprise, Surp
(1)
t , and uncertainty, Unc

(1)
t indices of Scotti

26



(2016).13 All seven variables might potentially be useful for predicting future stock mar-

ket volatility. With the exception of RV
(1)

t , our sample starts in January 1991 and ends in

June 2016, i.e. covers 25 years. Unfortunately, RV
(1)

t is available for the period January

2000 to June 2016 only. In addition to the daily variables, we also consider the 22-days

rolling window versions, defined as x
(22)
t = 1/22

∑21
j=0 xt−j .

Table 3 shows the contemporaneous correlations between the seven variables. Below

the diagonal the correlations for N = 1 and above the diagonal the correlations for

N = 22 are provided. For N = 1, V IX
(1)
t and RV

(1)

t have the highest correlation

(0.76) among all variables. Interestingly, the correlation between RV
(1)

t and RV
(1)
t is only

0.54, presumably due to the fact that RV
(1)
t is a noisy measure of daily variance. The

other correlations have the expected signs: V IX
(1)
t is positively correlated with economic

policy uncertainty, EPU
(1)
t , and uncertainty related to the state of the economy, Unc

(1)
t ,

but negatively correlated with the business conditions index, ADS
(1)
t , and economic data

surprises, Surp
(1)
t . For N = 22 the correlations between all variables increase in absolute

value. Interestingly, the correlation between RV
(22)

t and RV
(22)
t is now 0.98, showing that

the measurement error arising from using daily returns instead of high-frequency returns

is much less pronounced when estimating monthly realized variances.

Next, we estimate a GARCH(1,1) for the daily log-returns on the S&P 500 and then

apply our LM test to each of the variables. As Panel A of Table 4 shows, the LM test

rejects the null for V IX
(1)
t , RV

(1)

t , EPU
(1)
t and ADS

(1)
t at the 1% level. Thus, these

variables might be useful predictors of stock market volatility and could be drivers of

an omitted second component. The test outcome is line with the previous literature:

realized (and expected) variances are found to be useful in GARCH-MIDAS models in

Engle et al. (2013) and Conrad and Loch (2015a). Similarly, Dorion (2016) shows that

a GARCH-MIDAS model based on the ADS Business Conditions Index is informative

for the valuation of options. The finding that the test does not reject the null for RV
(1)
t

is likely to be due to the fact that RV
(1)
t is a noisy measure of the daily variance. At

first sight, it might appear counterintuitive that the test rejects for V IX
(1)
t and EPU

(1)
t

but not for Unc
(1)
t . However, although the three series are positively correlated, Unc

(1)
t

13Data on the ADS can be obtained from the website of the Federal Reserve

Bank of Philadelphia. The surprise and uncertainty indices can be downloaded from

https://sites.google.com/site/chiarascottifrb/.
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Table 3: Correlations between explanatory variables, x
(N)
t , for N = 1 and N = 22.

V IX
(N)
t RV

(N)
t RV

(N)
t EPU

(N)
t ADS

(N)
t Unc

(N)
t Surp

(N)
t

V IX
(N)
t 1.00 0.90 0.91 0.60 -0.68 0.52 -0.36

RV
(N)
t 0.54 1.00 0.98 0.51 -0.59 0.44 -0.36

RV
(N)
t 0.76 0.53 1.00 0.52 -0.57 0.44 -0.38

EPU
(N)
t 0.43 0.23 0.31 1.00 -0.43 0.36 -0.23

ADS
(N)
t -0.62 -0.31 -0.41 -0.30 1.00 -0.51 0.26

Unc
(N)
t 0.47 0.22 0.30 0.24 -0.46 1.00 -0.24

Surp
(N)
t -0.30 -0.16 -0.24 -0.16 0.20 -0.23 1.00

Notes: The table presents the correlations between the different explanatory variables.

Correlations below the diagonal correspond to N = 1 and correlations above the diagonal

to N = 22. Correlations involving RV
(N)

t are for the 2000-2016 period. All other

correlation figures are for the 1991-2016 period.

often spikes (e.g. in the years 2004, 2005 and 2012) when the other two series do not

increase.14 Potentially this difference is due to the fact that V IX
(1)
t (and partly EPU

(1)
t )

are forward-looking, while Unc
(N)
t is based on current surprises in macroeconomic releases.

Similarly, the news revealed by Surp
(N)
t might be instantaneously incorporated in stock

markets and, therefore, Surp
(1)
t may not be useful for predicting future long-term volatil-

ity. Also, all variables for which the test rejects reveal a pronounced cyclical (ADS
(1)
t )

or counter-cyclical (V IX
(1)
t , RV

(1)

t , EPU
(1)
t ) pattern, while Unc

(1)
t and Surp

(1)
t are less

(counter-)cyclical. Given the empirical observation that long-term stock market volatility

is counter-cyclical, this provides a further rationalization for the test outcomes.

The LM tests for the 22-day rolling window versions of the explanatory variables point

into the same direction as before. While the test rejects for V IX
(22)
t and RV

(22)

t at the

1% level, it rejects for EPU
(22)
t and ADS

(22)
t at the 8% level only. As discussed in the

simulation section, the test appears to loose power when the explanatory variables become

smoother. Interestingly, the test does still not reject for RV
(22)

t . Although the correlation

14Scotti (2016, p.16) compares Unc
(1)
t with the VIX and economic policy uncertainty and notes that

Unc
(1)
t “exceeds 1.65 standard deviations above its mean only few times but the peaks do not always

correspond with the peaks of the other series suggesting that these uncertainty measures might indeed

carry slightly different information.”
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between RV
(22)
t and RV

(22)

t is 0.98, the two measures differ substantially during crises

periods such as October 2008. This is because large daily movements in the S&P 500

typically lead to much stronger increases in RV
(22)
t than in RV

(22)

t . Since the fraction of

the total conditional variance of daily returns that is potentially due to variation in the

22-days realized variance is relatively small, the test does not detect an effect of RV
(22)
t

which systematically ‘overshoots’ during turbulent times.

Also, it is important to note that the LM and LMLT,mod tests lead to the same decision

for N = 1 but LMLT,mod never rejects for N = 22.

Table 4: LM test for S&P 500 returns for the 1991-2016 period.

Panel A: daily returns

xt V IX
(1)
t RV

(1)
t RV

(1)
t EPU

(1)
t ADS

(1)
t Unc

(1)
t Surp

(1)
t

LM 92.46
[<0.01]

1.63
[0.20]

21.19
[<0.01]

21.63
[<0.01]

6.21
[0.01]

0.02
[0.90]

1.09
[0.30]

LMLT,mod 32.62
[<0.01]

1.69
[0.19]

9.97
[<0.01]

21.63
[<0.01]

4.29
[0.04]

0.25
[0.62]

0.09
[0.76]

xt V IX
(22)
t RV

(22)
t RV

(22)
t EPU

(22)
t ADS

(22)
t Unc

(22)
t Surp

(22)
t

LM 9.51
[<0.01]

0.08
[0.77]

6.53
[0.01]

3.14
[0.08]

3.08
[0.08]

0.62
[0.43]

0.17
[0.68]

LMLT,mod 2.38
[0.12]

0.01
[0.91]

1.66
[0.20]

0.16
[0.69]

0.42
[0.52]

1.68
[0.20]

0.70
[0.41]

Panel B: weekly returns

xt V IX
(W )
t RV

(W )
t RV

(W )
t EPU

(W )
t ADS

(W )
t Unc

(W )
t Surp

(W )
t

LM 28.77
[<0.01]

33.52
[<0.01]

11.76
[<0.01]

16.59
[<0.01]

5.69
[0.02]

0.00
[0.97]

4.63
[0.03]

LMLT,mod 14.90
[<0.01]

27.89
[<0.01]

11.49
[<0.01]

6.65
[<0.01]

6.3
[0.01]

0.11
[0.75]

1.93
[0.16]

Panel C: monthly returns

xt V IX
(M)
t RV

(M)
t RV

(M)
t EPU

(M)
t ADS

(M)
t Unc

(M)
t Surp

(M)
t

LM 6.44
[0.01]

14.77
[<0.01]

7.86
[<0.01]

18.70
[<0.01]

9.71
[<0.01]

1.87
[0.17]

0.20
[0.66]

LMLT,mod 2.46
[0.11]

8.17
[<0.01]

4.48
[0.03]

10.56
[<0.01]

1.54
[0.21]

2.44
[0.11]

0.33
[0.56]

Notes: The table reports LM and LMLT,mod test statistics for seven explanatory variables

based on K = 1. Numbers in brackets are p-values. For all variables but RV
(·)

t the sample

covers the 1991-2016 period. For RV
(·)

t the sample is based on the 2000-2016 period.

Finally, we apply the LM test to weekly and monthly data. For this, we calculate

weekly/monthly returns as the sum of the daily log-returns within each week/month.
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We construct weekly/monthly explanatory variables as the average of the explanatory

variables within each week, x
(W )
t , or month x

(M)
t . The time index t now refers to a weekly

or monthly frequency. Panels B and C of Table 4 show that the test results remain

qualitatively unchanged. Interestingly, now the test rejects the null for RV
(W )
t as well

as RV
(M)
t . An explanation could be as follows: as noted before, RV

(W )
t and RV

(M)
t are

more accurate estimates of the weekly and monthly variance than RV
(1)
t is for the daily

variance. In addition, the fraction of the total conditional variance that is due to the long-

term component and, hence, due to xt is larger for low-frequency (weekly or monthly)

than for high-frequency (daily) returns. This intuition is confirmed when estimating

GARCH-MIDAS models for daily or weekly/monthly data (results not reported).

In summary, our test results provide convincing evidence that a simple GARCH(1,1)

is misspecified for the given sample. However, which variable and frequency should be

selected for modelling the second component will ultimately depend on the specific appli-

cation. For example, one variable might dominate when one is interested in forecasting

tomorrow’s conditional variance, but another one when the interest lies in forecasting next

month’s variance.

4.2 Mixed-Frequency Data

For the mixed-frequency application we use the same data as in Conrad and Loch (2015a).

We construct quarterly realized variances RVt from the continuously compounded daily

S&P 500 stock returns for the 1973Q1 to 2010Q4 period. Eleven macroeconomic variables

are then used to test whether macroeconomic conditions can predict financial volatility.

The macro variables are: real GDP, industrial production, the unemployment rate, hous-

ing starts, corporate profits, the GDP deflator, the Chicago Fed national activity index

(NAI), the new orders index of the Institute for Supply Management, the University of

Michigan consumer sentiment index, real personal consumption and the term spread. All

variables are considered at the quarterly frequency. We include the NAI and the new

orders index in levels and take the first difference of the respective level for the unem-

ployment rate and the consumer sentiment index. For all other variables, we calculate

annualized quarter-over-quarter percentage changes. For a more detailed description of

the macro variables see Section 3 in Conrad and Loch (2015a).

We focus on the predictive regression version of our test statistic (see Alternative 2 in
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Section 2.6). Based on the following predictive regression

ln(
√
RVt) = c + π1xt−1 + ρ ln(

√
RVt−1) + ζt, (47)

Conrad and Loch (2015a) find that the π1 parameter estimate is insignificant for each

macro variable (see their Section 4.4). This result is in line with the common notion

that macro conditions do not help to forecast quarterly stock market volatility once one

controls for lagged stock market volatility. We now show that this conclusion is premature.

Following the discussion in Section 2.6, we first estimated equation (43) for the same data

(again with K = 1) and found a significant effect for six out the eleven variables (results

not reported). Table 5 shows that these results are robust to including the first lag of

the volatility-adjusted realized variance as an additional regressor, i.e. we consider the

regression:15

ln(
̂̃
RV t) = c̃+ π1xt−1 + ρ ln(

̂̃
RV t−1) + ζ̃ t (48)

Although the estimate of the volatility-adjusted realized variance,
̂̃
RV t, has measurement

error, for simplicity we rely on the usual critical values when testing for the significance

of π1. Since the test is then undersized, still finding a significant effect is a strong result.

More specifically, real GDP, industrial production, the NAI and new orders are sig-

nificant at the 1% level. The unemployment rate and corporate profits are significant at

the 5% and 10% level. The fact that we do find a significant relationship between macro

conditions and financial volatility when estimating equation (48) instead of equation (47)

suggests that the volatility-adjusted realized variance is indeed the appropriate dependent

variable. Although ln(
̂̃
RV t) as well as RVt suffer from measurement error, the effect of

the measurement error appears to be much stronger for RVt. When reestimating equa-

tion (48) by including more lags of the macro variables the picture remains the same.16

In conclusion, we provide strong evidence that the apparent inability of macro conditions

to forecast financial volatility which is document using predictive regressions as in equa-

tion (47) seems to be driven by the strong measurement error in RVt which masks the

existing relationship.

15We also estimated the same equation with

√
̂̃
RV t replacing

̂̃
RV t. The results remain qualitatively

unchanged.
16For some variables, the results further improve. For example, when including lags of housing starts

the third lag is highly significant. This is in line with the finding in Conrad and Loch (2015a) that

housing starts is a leading variable and, hence, affects financial volatility with some lag.
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Table 5: Predictive Regressions

Variable c̃ π1 ρ adj. R2

∆ real GDP 6.4007⋆⋆⋆
(0.6885)

−0.0107⋆⋆⋆
(0.0040)

0.1829⋆⋆
(0.0866)

4.81

∆ Ind. prod. 6.4174⋆⋆⋆
(0.6891)

−0.0052⋆⋆⋆
(0.0018)

0.1789⋆⋆
(0.0866)

4.85

∆ Unemp. 6.4461⋆⋆⋆
(0.6644)

0.0799⋆⋆
(0.0349)

0.1735⋆⋆
(0.0834)

4.39

∆ Housing 6.2327⋆⋆⋆
(0.7114)

−0.0004
(0.0004)

0.2014⋆⋆
(0.0894)

3.29

∆ Corp. prof. 6.3006⋆⋆⋆
(0.7037)

−0.0009⋆
(0.0005)

0.1939⋆⋆
(0.0883)

4.14

∆ GDP deflator 6.2222⋆⋆⋆
(0.7196)

−0.0029
(0.0075)

0.2039⋆⋆
(0.0899)

2.94

NAI 6.5619⋆⋆⋆
(0.6545)

−0.0521⋆⋆⋆
(0.0173)

0.1586⋆⋆
(0.0823)

6.35

New orders 6.8507⋆⋆⋆
(0.7127)

−0.0058⋆⋆⋆
(0.0021)

0.1622⋆⋆⋆
(0.0866)

6.07

∆ Cons. sent. 6.2262⋆⋆⋆
(0.7171)

0.0010
(0.0034)

0.2020⋆⋆
(0.0900)

2.89

∆ real cons. 6.3365⋆⋆⋆
(0.7083)

−0.0072
(0.0060)

0.1905⋆⋆
(0.0895)

3.64

Term spread 6.3032⋆⋆⋆
(0.6857)

−0.0186
(0.0149)

0.1961⋆⋆
(0.0867)

3.84

Notes: The table reports parameter estimates for the predic-

tive regression given by equation (48). Robust standard errors

are presented in parentheses and ∗∗∗,∗∗ ,∗ indicate significance

at the 1%, 5%, and 10% level. The adjusted R2 is reported in

percentages. The sample covers the 1973Q1 - 2010Q4 period.

5 Conclusions

We develop a Lagrange Multiplier test for the null hypothesis of a simple GARCH model

against a multiplicative two-component GARCH specification. The test provides a first

solution to statistically evaluate if there is a separate long-term time-varying volatility

component driven by a macroeconomic explanatory variable, besides the standard short-

term GARCH part. We derive the asymptotic properties of our test and study its finite

sample performance. The test covers the case that the returns as well as the explanatory

variable are observed at the same frequency but also the empirically relevant mixed-

frequency setting. In an application to S&P 500 returns, we find that the test provides
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useful guidance in model specification. We also provide an explanation for why standard

predictive regressions might fail to find a relationship between macro conditions and

financial volatility.
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A Proofs

Proof of Theorem 1. First, we show that Ω is finite and positive definite. From Francq

and Zak̈ıoan (2004) it follows that Ωηη is finite and positive definite. What remains to

be shown is that Ωππ is finite and positive definite. If this is true, then by the Cauchy-

Schwarz inequality the “off-diagonal matrices” will also be finite and positive definite.

Finiteness of Ωππ:

Recall from equation (21) that Ωππ = 1
4
(κZ − 1)E[r∞0,t(r

∞
0,t)

′]. It follows from Assump-

tion 4 that 0 < κZ − 1 < ∞. Moreover, ||E[r∞0,t(r∞0,t)′]|| is finite if E[||r∞0,t(r∞0,t)′||] < ∞.17

A typical element of the K × 1 vector r∞0,t is given by

r∞0,kt = f ′
0(xt−k − α0

1

h∞0,t

∞∑

j=0

βj
0ε

2
t−1−jxt−1−k−j). (49)

First, f ′
0 is bounded by Assumption 4 and E[|xt−k|2] <∞ by Assumption 5. Second,


E

∣∣∣∣∣

∑∞
j=0 α0β

j
0ε

2
t−1−jxt−1−k−j

h∞0,t

∣∣∣∣∣

2



1/2

≤


E

∣∣∣∣∣
∞∑

j=0

α0β
j
0ε

2
t−1−j(

ω0 + α0β
j
0ε

2
t−1−j

)xt−1−k−j

∣∣∣∣∣

2



1/2

(50)

≤
∞∑

j=0


E

∣∣∣∣∣
α0β

j
0ε

2
t−1−j(

ω0 + α0β
j
0ε

2
t−1−j

)xt−1−k−j

∣∣∣∣∣

2



1/2

(51)

≤
∞∑

j=0


E

∣∣∣∣∣∣

(
α0β

j
0

ω0
ε2t−1−j

)s/4

xt−1−k−j

∣∣∣∣∣∣

2


1/2

(52)

≤ α
s/4
0

ω
s/4
0

(
E
[
ε2st−1−j

])1/4 (
E
[
|xt−1−k−j |4

])1/4

∞∑

j=0

β
js/4
0 <∞.

The arguments used above are similar to the ones in Francq and Zak̈ıoan (2004, Eq. (4.19),

p.619). In particular, in equation (50) we use that h∞0,t ≥ ω0+α0β
j
0ε

2
t−1−j . In equation (51)

we use Minkowski’s inequality. Next, in equation (52) we use the fact that w/(1+w) ≤ ws

for all w > 0 and any s ∈ (0, 1). Finally, Assumption 3 implies that there exists some

s > 0 such that E
[
ε2st−1−j

]
< ∞ (see Proposition 1 in Francq and Zak̈ıoan, 2004, p.607).

By Assumption 5, E
[
|xt−1−k−j |4

]
<∞.

17Throughout the paper || · || denotes the euclidean norm.
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This implies E[|r∞0,kt|2] < ∞ and E[|r∞0,ktr∞0,jt|] < ∞ by Cauchy-Schwarz inequality

which means that Ωππ is finite.

Positive definiteness of Ωππ:

As κZ −1 > 0, it remains to show that c′E[r∞0,t(r
∞
0,t)

′]c > 0 for any non-zero c ∈ RK×1.

Assume the contrary, i.e., there exists a c 6= 0 such that c′E[r∞0,t(r
∞
0,t)

′]c = 0. This implies

E[(c′r∞0,t)
2] = 0 and, thus, c′r∞0,t = 0 a.s.. Hence, there exists a linear combination of

r∞0,1t, . . . , r
∞
0,Kt which equals zero a.s., i.e.,

0 =
K∑

k=1

ck

(
xt−k −

α0

h∞0,t

∞∑

j=0

βj
0ε

2
t−1−jxt−1−k−j

)
a.s. (53)

Using that 0 < β0 < 1 by Assumption 3 and rearranging, this requires

c′xt =

[
α0

h∞0,t
(1− β0L)

−1L

]
(ε2tc

′xt) a.s., (54)

where L denotes the lag operator. Clearly, the operator in square brackets cannot have

an eigenvalue of 1. Moreover, Assumption 4 imposes Z2
t and, therefore, also ε2t to be

non-degenerate. Hence, the only way to fulfill the above equation is by c′xt = 0 a.s..

This would imply that we can write cK = −∑K−1
k=1 ck/cKxt−k and, hence, τ 0t would have

a representation which is of the order K − 1. However, this contradicts Assumption 5.

Thus, Ωππ must be invertible and hence positive definite.

Next, E[d∞
t (η0)|Ft−1] = 0. From Francq and Zaköıan (2004) and Assumptions 3-5 it

then follows that d∞
t (η0) is a stationary and ergodic martingale difference sequence with

finite second moment. Applying Billingsley’s (1961) central limit theorem for martingale

differences gives the result.

The following proposition will be used in the proof of Theorem 2.

Proposition 1. Under Assumptions 3-6, we have that

− 1

T

T∑

t=1

∂d∞
π,t(η̃)

∂η′
P−→ Jπη = −E

[
∂d∞

π,t(η0)

∂η′

]
, (55)

where η̃ = η0 + oP (1).

Proof of Proposition 1. We obtain (55) by showing that Jπη(η) = −E
[
∂d∞

π,t(η)

∂η′

]
is finite

with a uniform bound for all η ∈ Θ. Then a uniform weak law of large numbers (see, e.g.,
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Theorem 3.1. in Ling and McAleer, 2003) implies

sup
η

∣∣∣∣
∣∣∣∣−

1

T

T∑

t=1

∂d∞
π,t(η)

∂η′ − Jπη(η)

∣∣∣∣
∣∣∣∣ = oP (1).

Equation (55) follows from the triangle inequality and the fact that η̃ = η0 + oP (1).

Using equation (23) we obtain

∣∣∣∣
∣∣∣∣
∂d∞

π,t(η)

∂η′

∣∣∣∣
∣∣∣∣ ≤ 1

2

(∣∣∣∣
ε2t
h∞t

∣∣∣∣ · ||r∞t || · ||(y∞
t )′||+

∣∣∣∣
ε2t
h∞t

− 1

∣∣∣∣ ·
∣∣∣∣
∣∣∣∣
∂r∞t
∂η′

∣∣∣∣
∣∣∣∣
)

≤ C|ε2t + ω|
(
||r∞t || · ||(y∞

t )′||+
∣∣∣∣
∣∣∣∣
∂r∞t
∂η′

∣∣∣∣
∣∣∣∣
)
. (56)

The last inequality follows with a generic constant 0 < C <∞ and h∞t ≥ ω > 0.

First, consider the three elements of ||(y∞
t )′||. To simplify the notation note that

∂h̄∞

t

∂η
|π=0 =

∂h∞

t

∂η
. Since

∂h∞

t

∂ω
= 1/(1 − β), we have | 1

h∞

t

∂h∞

t

∂ω
| ≤ 1/(ω(1 − β)) < ∞. Then

α
∂h∞

t

∂α
=
∑∞

j=0 αβ
jε2t−1−j ≤ h∞t and, therefore, | 1

h∞

t

∂h∞

t

∂α
| ≤ 1/α < ∞. Finally,

∂h∞

t

∂β
=

∑∞
j=0 jβ

j−1(ω + αε2t−1−j). We then obtain

∣∣∣∣
1

h∞t

∂h∞t
∂β

∣∣∣∣ ≤
∣∣∣∣∣
1

β

∞∑

j=0

jβj(ω + αε2t−1−j)

ω + βj(ω + αε2t−1−j)

∣∣∣∣∣

≤ 1

βωs

∞∑

j=0

j
∣∣βjs(ω + αε2t−1−j)

s
∣∣ , (57)

where we again use the fact that w/(1 + w) ≤ ws for all w > 0 and any s ∈ (0, 1). It

follows that ||(y∞
t )′|| ≤ C ′(1 +

∑∞
j=0 j

∣∣βjs(ω + αε2t−1−j)
s
∣∣) for some constant C ′ > 0.

Hence, using Cauchy-Schwarz inequality, the first summand in equation (56), i.e.

E
[
sup

η
|ε2t + ω| · ||r∞t || · ||(y∞

t )′||
]
, can be bounded from above by the terms

√
E[sup

η
|ε2t + ω|2]E[sup

η
||r∞t ||2] (58)

and

sup
η

∞∑

j=0

jβjsE[sup
η
(ω + αε2t−1−j)

s|ε2t + ω| ||r∞t ||] ≤

sup
η

∞∑

j=0

jβjs
√
E[sup

η
(ω + αε2t−1−j)

2s|ε2t + ω|2]E[sup
η
||r∞t ||2]. (59)

The finiteness of (58) follows from Assumption 6 and similar arguments as in the proof

of Theorem 1. The finiteness of (59) follows by applying Hölder’s inequality, since for the
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elements in the sum which involve expectations of the squared observations we have

E[sup
η
(ω + αε2t−1−j)

2s|ε2t + ω|2] ≤
(
E[sup

η
(ω + αε2t−1−j)

2(1+s)]
)s/(1+s) (

E[sup
η
|ε2t + ω|2(1+s)]

)1/(1+s)
(60)

and Assumption 6 applies again.

Using the Cauchy-Schwarz-Inequality for the two factors in the second term in (56),

we are left with the need to show that E
[
sup

η

∣∣∣∣∂r∞t
∂η′

∣∣∣∣2
]
is finite. This follows from

(f ′
0)

−1∂r
∞
t

∂η′ =
∂

∂η′xt −
∂

∂η′

(
1

h∞t

∞∑

j=0

αβjε2t−1−jxt−1−j

)

=
∂

∂η′xt −
1

h∞t

( ∞∑

j=0

αβjε2t−1−j

∂

∂η′xt−1−j

)

+

(
1

h∞t

∞∑

j=0

αβjε2t−1−jxt−1−j

)
(y∞

t )′

− 1

h∞t

∞∑

j=0

xt−1−j

(
∂

∂η′αβ
jε2t−1−j

)
(61)

The first two terms vanish in the model with an explanatory variable xt from outside the

model as ∂xt

∂η′
= 0 or in a model with xt−k = ε2t−k.

Remark 5. There also exists a bound for E
[
sup

η

∣∣∣∣∂r∞t
∂η′

∣∣∣∣2
]
in the case of xt with ele-

ments xt−k =
ε2
t−k

h∞

t−k

(the ‘ARCH nested in GARCH’ case). Here, in the first two terms in

equation (61) we have
∂xt−k

∂η′
= − εt−k

(h∞

t−k
)2

∂h∞

t−k

∂η′
and, hence, explicit bounds for terms of this

type can be obtained as before.

Boundedness of the norm of the third term follows for all η in expectation with a com-

bination of the argument directly above and the considerations in the proof of Theorem 1.

The fourth term can be written as:

1

h∞t




0
∑∞

j=0 β
jε2t−1−jxt−2−j α

∑∞
j=0 jβ

j−1ε2t−1−jxt−2−j

0
∑∞

j=0 β
jε2t−1−jxt−3−j α

∑∞
j=0 jβ

j−1ε2t−1−jxt−3−j

...

0
∑∞

j=0 β
jε2t−1−jxt−1−K−j α

∑∞
j=0 jβ

j−1ε2t−1−jxt−1−K−j




(62)

Hence, for typical elements of the second and third column it follows that

Esup
η

∣∣∣∣∣
1

h∞t

∞∑

j=0

βjε2t−1−jxt−1−k−j

∣∣∣∣∣

2

<∞
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and

Esup
η

∣∣∣∣∣
1

h∞t
α

∞∑

j=0

jβj−1ε2t−1−jxt−1−k−j

∣∣∣∣∣

2

<∞

by similar arguments as used before.

Proof of Theorem 2. First, consider a mean value expansion of
√
TD∞

η
(η̂) around the

true value η0

0 =
√
TD∞

η
(η̂) =

√
TD∞

η
(η0) +

1

T

T∑

t=1

∂d∞
η,t(η̃)

∂η′

√
T (η̂ − η0) (63)

with η̃ = η0+oP (1). Under Assumptions 3 and 4, Francq and Zaköıan (2004) have shown

that

− 1

T

T∑

t=1

∂d∞
η,t(η̃)

∂η′
P−→ Jηη = −E

[
∂d∞

η,t(η0)

∂η′

]
(64)

and, hence, equation (63) can be written as

√
T (η̂ − η0) = J−1

ηη

√
TD∞

η
(η0) + oP (1). (65)

Similarly, a mean value expansion of
√
TD∞

π
(η̂) around the true value η0 leads to

√
TD∞

π
(η̂) =

√
TD∞

π
(η0) +

1

T

T∑

t=1

∂d∞
π,t(η̃)

∂η′

√
T (η̂ − η0). (66)

Combining equation (65) and Proposition 1 leads to

√
TD∞

π
(η̂) =

√
TD∞

π
(η0)− JπηJ

−1
ηη

√
TD∞

η
(η0) + oP (1) (67)

= [−JπηJ
−1
ηη

: I]
√
T


 D∞

η
(η0)

D∞
π
(η0)


+ oP (1) (68)

= [−JπηJ
−1
ηη

: I]
√
TD∞(η0) + oP (1). (69)

Applying Theorem 1 gives the asymptotic distribution

√
TD∞

π
(η̂)

d−→ N (0, [JπηJ
−1
ηη

: I]Ω[JπηJ
−1
ηη

: I]′) (70)

which has the form of AΩA′ in Halunga and Orme (2009, p.372/373). The covariance

matrix can be written as

Σ = [−JπηJ
−1
ηη

: I]Ω[−JπηJ
−1
ηη

: I]′

= Ωππ + JπηJ
−1
ηη
ΩηηJ

−1
ηη
J′
πη

− JπηJ
−1
ηη
Ωηπ −ΩπηJ

−1
ηη
J′
πη
.
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Finally, using equations (21), (24) and (25) the expression for Σ simplifies to:

Σ =
1

4
(κZ − 1)

(
E[r∞0,t(r

∞
0,t)

′]− E[r∞0,t(y
∞
0,t)

′]
(
E[y∞

0,t(y
∞
0,t)

′]
)−1

E[y∞
0,t(r

∞
0,t)

′]
)
. (71)

Proof of Theorem 3. We show that

√
TDπ(η̂) =

√
TD∞

π
(η̂) + oP (1). (72)

Hence, the observed quantity
√
TDπ(η̂) will have the same asymptotic distribution as

the unobserved
√
TD∞

π
(η̂). The asymptotic distribution of the test statistic then follows

directly from Theorem 2. Standardization with the consistent estimator Σ̂ instead of the

theoretical Σ, has no effect on the final χ2-distribution of the LM test statistic. This can

be easily seen from similar considerations as the ones outlined above and below in detail.

Since

sup
η
||
√
TD∞

π
(η)−

√
TDπ(η)|| ≤

1√
T

T∑

t=1

sup
η
||d∞

π,t(η)− dπ,t(η)||, (73)

we establish equation (72) by showing that

1√
T

T∑

t=1

sup
η
||d∞

π,t(η)− dπ,t(η)|| = oP (1). (74)

Consider the following decomposition:

2(d∞
π,t(η)− dπ,t(η)) =

(
ε2t
h∞t

− 1

)
r∞t −

(
ε2t
ht

− 1

)
rt

=

(
ε2t
h∞t

− 1

)
r∞t −

(
ε2t
ht

− 1

)
rt +

[(
ε2t
ht

− 1

)
r∞t −

(
ε2t
ht

− 1

)
r∞t

]

=

(
ε2t
h∞t

− ε2t
ht

)
r∞t +

(
ε2t
ht

− 1

)
(r∞t − rt)

= ε2t

(
ht − h∞t
h∞t ht

)
r∞t +

(
ε2t
ht

− 1

)
(r∞t − rt) +

[(
ε2t
h∞t

− 1

)
(r∞t − rt)−

(
ε2t
h∞t

− 1

)
(r∞t − rt)

]

= ε2t

(
ht − h∞t
h∞t ht

)
r∞t + ε2t

(
ht − h∞t
h∞t ht

)
(r∞t − rt) +

(
ε2t
h∞t

− 1

)
(r∞t − rt)

Since ht ≥ ω > 0 and h∞t ≥ ω > 0 we have

||d∞
π,t(θ)− dπ,t(θ)|| ≤ 1

ω

{
|ε2t + ω| ||r∞t − rt||+ ε2t ||r∞t ||

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣+ ε2t ||r∞t − rt||
∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣
}
.
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First, note that

(f ′
0)

−1(r∞t − rt) = −α 1

h∞t

∞∑

j=t

βjε2t−1−jxt−1−j . (75)

Next, consider a typical element:

(f ′
0)

−1
(
Esup

η
|r∞k,t − rk,t|2

)1/2
=


Esup

η

∣∣∣∣∣α
1

h∞t

∞∑

j=t

βjε2t−1−jxt−1−k−j

∣∣∣∣∣

2



1/2

≤
∞∑

j=t


Esup

η

∣∣∣∣∣
αβjε2t−1−j

ω + αβjε2t−1−k−j

xt−1−k−j

∣∣∣∣∣

2



1/2

≤
∞∑

j=t


Esup

η

∣∣∣∣∣

(
αβj

ω
ε2t−1−j

)s/4

xt−1−k−j

∣∣∣∣∣

2



1/2

≤
(
E[|εt−1−j |2s]

)1/4 (
E[|xt−1−k−j|4]

)1/4

sup
η

(α
ω

)s/4 ∞∑

j=t

βjs/4

=
(
E[|εt−1−j |2s]

)1/4 (
E[|xt−1−k−j|4]

)1/4

sup
η

(α
ω

)s/4 (βs/4)t

1− βs/4
(76)

which shows that Esup
η
||r∞k,t − rk,t||2 = O(βts/2).

Hence,

Esup
η
|ε2t | ||r∞t − rt|| ≤

√
Esup

η
|ε4t |Esupη

||r∞t − rt||2 = O(βts/4)

by Assumption 3 and equation (76). Therefore, 1√
T

∑T
t=1Esupη

|ε2t | ||r∞t −rt|| = o(1) and,

hence, by Markov’s inequality 1√
T

∑T
t=1 supη

|ε2t | ||r∞t − rt|| = oP (1).

For the treatment of the second term we use the fact that
∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣ ≤
αs

ωs

∞∑

j=t

(βs)jε2st−j , (77)
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where again we use that w/(1 + w) ≤ ws for all w > 0 and any s ∈ (0, 1). Then,

Esup
η
ε2t ||r∞t ||

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣ ≤ Esup
η
||ε2t r∞t ε2st−j || supη

αs

ωs

∞∑

j=t

(βs)j

≤
√
Esup

η
||r∞t ||2E|ε4t ε4st−j| supη

αs

ωs
(βs)t

∞∑

j=0

(βs)j

=
√
Esup

η
||r∞t ||2E|ε4t ε4st−j| supη

αs

ωs(1− βs)
(βs)t

= O((βs)t). (78)

The last line follows because it can be shown by similar arguments as in the proof of

Theorem 1 that Esup
η
||r∞t ||2 < ∞ and because Hölder’s inequality and Assumption 6

imply that E|ε4tε4st−j| ≤
(
E|ε4(1+s)

t |
)1/(1+s) (

E|ε4(1+s)
t−j |

)s/(1+s)

< ∞. Equation (78) implies

that
1√
T

T∑

t=1

Esup
η
ε2t ||r∞t ||

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣ = o(1), (79)

and, again, by Markov’s inequality 1√
T

∑T
t=1 supη

ε2t ||r∞t || |(h∞t − ht)/h
∞
t | = oP (1).

The third term can be treated as follows:

1√
T

T∑

t=1

sup
η
ε2t ||r∞t − rt||

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣ ≤

√√√√ 1

T

T∑

t=1

sup
η
ε4t ||r∞t − rt||2

T∑

t=1

sup
η

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣
2

≤
{

1√
T

T∑

t=1

sup
η
ε2t ||r∞t − rt||

}{
T∑

t=1

sup
η

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣

}

because
∑T

t=1 w
2
t ≤

{∑T
t=1wt

}2

when wt ≥ 0 for all t. Above, we have already shown

that
∑T

t=1Esupη
ε2t ||r∞t − rt|| = O(1) and Esup

η

∣∣∣h
∞

t −ht

h∞

t

∣∣∣ = O(βts).
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B Simulation:

B.1 Size-adjusted power for exponential long-term component

and t distributed innovations.

The following table provides simulation results on the size-adjusted power for the case

that the innovation Zt is t distributed with 7 degrees of freedom.

Table 6: Empirical size-adjusted power for exponential long-term component and t dis-

tributed innovations.

xt V IXt V IX
(22)
t V IX

(65)
t

ω01 = 1, ω02 = 10

α0 = 0.09 α0 = 0.07 α0 = 0.09

weighting scheme I F S I F S I I

1% 24.3 16.5 9.4 34.6 32.4 16.5 5.3 3.5

LM 5% 54.9 44.1 32.1 59.3 57.1 39.3 20.1 13.9

10% 66.8 58.1 45.7 71.3 68.7 53.1 36.0 22.6

1% 15.6 12.6 10.1 29.9 27.7 21.6 5.2 3.8

LMLT,mod 5% 30.5 25.8 22.7 50.7 48.7 39.4 12.2 9.5

10% 42.0 36.3 32.0 60.2 58.9 51.2 19.2 15.8

1% 0.9 1.0 1.1 0.8 1.0 1.1 1.1 1.0

LMLT 5% 5.8 5.7 5.7 5.0 5.2 5.1 5.6 5.3

10% 9.7 9.8 9.9 9.5 9.7 10.0 9.8 9.8

V R 12.8 12.4 12.1 28.2 27.9 27.0 12.0 9.7

Notes: Innovations Zt are Student-t distributed with 7 degrees of freedom. Otherwise

see Table 2.

44



B.2 Size-adjusted power for linear long-term component.

Table 7: Empirical size-adjusted power for linear long-term component and normally

distributed innovations.

xt V IXt V IX
(22)
t V IX

(65)
t

ω01 = 1, ω02 = 10

α0 = 0.09 α0 = 0.07 α0 = 0.09

weighting scheme I F S I F S I I

1% 34.8 33.1 21.1 44.7 42.7 29.9 10.1 8.4

LM 5% 57.2 54.8 39.2 66.5 64.6 51.5 28.9 18.0

10% 66.4 64.8 50.7 75.6 74.2 63.0 42.2 30.4

1% 16.0 15.9 13.0 32.6 32.0 27.1 4.8 3.0

LMLT,mod 5% 34.8 34.1 30.3 59.2 58.1 51.1 14.3 107

10% 44.2 43.3 38.6 71.1 70.0 65.6 18.9 17.2

1% 0.9 0.9 0.9 1.0 1.0 0.9 0.9 0.8

LMLT 5% 5.9 5.9 5.4 5.6 5.6 5.3 4.8 4.6

10% 10.3 10.5 10.3 10.5 10.7 10.8 9.5 9.4

V R 12.4 12.3 12.1 29.5 29.4 29.0 12.0 10.5

Notes: Innovations Zt are standard normally distributed. The specification of the

long term component is given by τ0,t = 1 +
∑K

k=1 π0kxt−k. Otherwise see Table 2.
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Table 8: Empirical size-adjusted power for linear long-term component and t distributed

innovations.

xt V IXt V IX
(22)
t V IX

(65)
t

ω01 = 1, ω02 = 10

α0 = 0.09 α0 = 0.07 α0 = 0.09

weighting scheme I F S I F S I I

1% 24.3 20.0 14.6 30.0 28.6 18.7 4.4 3.2

LM 5% 39.7 34.5 28.4 48.3 46.7 37.9 17.4 12.3

10% 52.7 46.5 39.2 60.8 59.3 47.7 28.3 20.5

1% 10.3 9.2 8.3 20.1 19.6 16.4 4.5 3.5

LMLT,mod 5% 27.4 25.9 24.6 43.0 42.8 38.5 11.1 9.1

10% 37.3 35.0 32.9 53.8 52.9 49.4 16.6 15.0

1% 1.0 1.1 1.1 1.0 1.0 1.2 1.0 1.0

LMLT 5% 5.5 5.5 5.6 5.3 5.3 5.3 5.7 5.4

10% 9.9 9.8 9.7 9.9 10.0 10.0 9.6 9.7

V R 10.0 9.9 9.8 23.0 22.9 22.5 9.7 8.5

Notes: Innovations Zt are Student-t distributed with 7 degrees of freedom. The spec-

ification of the long term component is given by τ0,t = 1+
∑K

k=1 π0kxt−k. Otherwise

see Table 2.
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