
Testing the Unconfoundedness Assumption via Inverse

Probability Weighted Estimators of (L)ATT ∗

Stephen G. Donald† Yu-Chin Hsu‡ Robert P. Lieli§

October 21, 2013

Abstract

We propose inverse probability weighted estimators for the local average treatment effect

(LATE) and the local average treatment effect for the treated (LATT) under instrumental vari-

able assumptions with covariates. We show that these estimators are asymptotically normal and

efficient. When the (binary) instrument satisfies one-sided non-compliance, we propose a Durbin-

Wu-Hausman-type test of whether treatment assignment is unconfounded conditional on some

observables. The test is based on the fact that under one-sided non-compliance LATT coincides

with the average treatment effect for the treated (ATT). We conduct Monte Carlo simulations to

demonstrate, among other things, that part of the theoretical efficiency gain afforded by uncon-

foundedness in estimating ATT survives pre-testing. We illustrate the practical implementation of

the test on data from training programs administered under the Job Training Partnership Act.
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1 Introduction

Nonparametric estimation of average treatment effects from observational data is typically un-

dertaken under one of two types of identifying conditions. The unconfoundedness assumption,

in its weaker form, postulates that treatment assignment is mean-independent of potential out-

comes conditional on a vector of observed covariates. Nevertheless, this requirement carries with

it considerable identifying power; specifically, it identifies the average treatment effect (ATE) and

the average treatment effect for the treated (ATT) without any additional modeling assumptions.

On the other hand, if unobserved confounders exist then instrumental variables—related to the

outcome only through changing the likelihood of treatment—are typically utilized to learn about

treatment effects. Without further assumptions, the availability of an instrumental variable (IV)

is however not sufficient to identify ATE or ATT. In general, the IV will only identify the local

average treatment effect (LATE; Imbens and Angrist 1994) and the local average treatment effect

for the treated (LATT; Frölich and Lechner 2010; Hong and Nekipelov 2010). If one specializes

to binary instruments, as we do in this paper, then the LATE and LATT parameters correspond

to the average treatment effect over specific subgroups of the population. These subgroups are

however dependent on the choice of the instrument and are generally unobserved. Partly for these

reasons a number of authors have called into question the usefulness of LATE for program evalu-

ation (Heckman 1997; Heckman and Urzúa 2010; Deaton 2009). In most such settings ATE and

ATT are more natural and practically relevant parameters of interest—provided that they can be

credibly identified and accurately estimated. (In fairness, some of the criticism in Deaton (2009)

goes beyond LATE, and also applies to ATE/ATT as a parameter of interest. See Imbens (2010)

for a response to Deaton (2009).)

When using instrumental variables, empirical researchers are often called upon to tell a “story”

to justify their validity. As pointed out by Abadie (2003) and Frölich (2007), it is often easier to

argue that the relevant IV conditions hold if conditioning on a vector of observed covariates is also

allowed. In particular, Frölich (2007) shows that in this scenario LATE is still nonparametrically

identified and proposes efficient estimators, based on nonparametric imputation and matching, for

this quantity. Given the possible need to condition on a vector of observables to justify the IV

assumptions, it is natural to ask whether treatment assignment itself might be unconfounded con-

ditional on the same (or maybe a larger or smaller) vector of covariates. In this paper we propose a

formal test of this hypothesis that relies on the availability of a specific kind of binary instrument for
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which LATT=ATT (so that the latter parameter is also identified). Establishing unconfoundedness

under these conditions still offers at least two benefits: (i) it enables the estimation of an additional

parameter of interest (namely, ATE) and (ii) it potentially allows for more efficient estimation of

ATT than IV methods (we will argue this point in more detail later). To our knowledge this is the

first test in the literature aimed at this task.

More specifically, the contributions of this work are twofold. First, given a (conditionally)

valid binary instrument, we propose alternative nonparametric IV estimators of LATE and LATT.

These estimators rely on weighting by the inverse of the estimated instrument propensity score

and are computed as the ratio of two estimators that are of the form proposed by Hirano et al.

(2003), henceforth HIR. While Frölich (2007) conjectures in passing that such an estimator of

LATE should be efficient, he does not provide a proof. We fill this (admittedly small) gap in the

literature and formally establish the first order asymptotic equivalence of our LATE estimator and

Frölich’s imputation/matching-based estimators. We also demonstrate that our LATT estimator

is asymptotically efficient, i.e. first-order equivalent to that of Hong and Nekipelov (2010).

More importantly, we propose a Durbin-Wu-Hausman-type test for the unconfoundedness as-

sumption. On the one hand, if a binary instrument satisfying “one-sided non-compliance” (e.g.,

Frölich and Melly 2013a) is available, then the LATT parameter associated with that instrument

coincides with ATT, and is consistently estimable using the estimator we proposed. (Whether one-

sided non-compliance holds is verifiable from the data.) On the other hand, if treatment assignment

is unconfounded given a vector of covariates, ATT can also be consistently estimated using the HIR

estimator. If the unconfondedness assumption does not hold, then the HIR estimator will generally

converge to a different limit. Thus, the unconfoundedness assumption can be tested by comparing

our estimator of LATT with HIR’s estimator of ATT. Of course, if the validity of the instrument

itself is questionable, then the test should be more carefully interpreted as a joint test of the IV

conditions and the unconfoundedness assumption. We use a battery of Monte Carlo simulations to

explore in detail the finite sample properties of our IV estimator and the proposed test statistic.

We also provide an application to illustrate how to implement and interpret the test in practice.

We use the data set from Abadie et al. (2002) on training programs administered under the Job

Training Partnership Act (JTPA) in the U.S. and highlight a difference between the self-selection

process of men vs. women into these programs.

The rest of the paper is organized as follows. In Section 2 we present the theoretical framework;
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in Section 3 we describe the estimators for LATE and LATT. The implications of unconfoundedness

and the proposed test for it are discussed in Section 4. A rich set of Monte Carlo results is presented

in Section 5. In Section 6 we give the empirical application along with an additional, empirically

motivated, Monte Carlo exercise. Section 7 summarizes and concludes. The most important proofs

and the simulation tables from Section 5 are collected in the Appendix. More detailed proofs and

some additional simulations are available as an online supplement.

2 The basic framework and identification results

The following IV framework, augmented by covariates, is now standard in the treatment effect

literature; see, e.g., Abadie (2003) or Frölich (2007) for a more detailed exposition. For each

population unit (individual) one can observe the value of a binary instrument Z ∈ {0, 1} and a

vector of covariates X ∈ Rk. For Z = z, the random variable D(z) ∈ {0, 1} specifies individuals’

potential treatment status withD(z) = 1 corresponding to treatment andD(z) = 0 to no treatment.

The actually observed treatment status is then given by D ≡ D(Z) = D(1)Z + D(0)(1 − Z).

Similarly, the random variable Y (z, d) denotes the potential outcomes in the population that would

obtain if one were to set Z = z and D = d exogenously. The following assumptions, taken from

Abadie (2003) and Frölich (2007) with some modifications, describe the relationships between the

variables defined above and justify Z being referred to as an instrument:

Assumption 1 Let V =
(
Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1), D(1), D(0)

)′
.

(i) (Moments): E(V ′V ) <∞.

(ii) (Instrument assignment): There exists a subset X1 of X such that E(V |Z,X1) = E(V |X1) and

E(V V ′|Z,X1) = E(V V ′|X1) a.s. in X1.

(iii) (Exclusion of the instrument): P [Y (1, d) = Y (0, d)] = 1 for d ∈ {0, 1}.

(iv) (First stage): P [D(1) = 1] > P [D(0) = 1] and 0 < P (Z = 1|X1) < 1 for X1 defined in (ii).

(v) (Monotonicity): P [D(1) ≥ D(0)] = 1.

Assumption 1(i) ensures the existence of the moments we will work with. Part (ii) states that,

conditional on X1, the instrument is exogenous with respect to the first and second moments of

the potential outcome and treatment status variables. This is satisfied, for example, if the value

of the instrument is completely randomly assigned or the instrument assignment is independent

of V conditional on X1. Nevertheless, part (ii) is weaker than the full conditional independence
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assumed in Abadie (2003) and Frölich (2007), but is still sufficient for identifying LATE and LATT.

Part (iii) precludes the instrument from having a direct effect on potential outcomes. Part (iv)

postulates that the instrument is (positively) related to the probability of being treated and implies

that the distributions X1|Z = 0 and X1|Z = 1 have common support. Finally, the monotonicity

of D(z) in z, required in part (v), allows for three different types of population units with nonzero

mass: compliers [D(0) = 0, D(1) = 1], always takers [D(0) = 1, D(1) = 1] and never takers

[D(0) = 0, D(1) = 0] (cf. Imbens and Angrist 1994). Of these, compliers are actually required

to have positive mass—part (iv) rules out P [D(1) = D(0)] = 1. In light of these assumptions it

is customary to think of Z as a variable that indicates whether an exogenous incentive to obtain

treatment is present or as a variable signaling “intention to treat”.

Given the exclusion restriction in part (iii), one can simplify the definition of the potential

outcome variables as Y (d) ≡ Y (1, d) = Y (0, d), d = 0, 1. The actually observed outcomes are then

given by Y ≡ Y (D) = Y (1)D + Y (0)(1 − D). The LATE (≡ τ) and LATT (≡ τt) parameters

associated with the instrument Z are defined as

τ ≡ E[Y (1)− Y (0) | D(1) = 1, D(0) = 0],

τt ≡ E[Y (1)− Y (0) | D(1) = 1, D(0) = 0, D = 1].

LATE, originally due to Imbens and Angrist (1994), is the average treatment effect in the complier

subpopulation. The LATT parameter was considered, for example, by Frölich and Lechner (2010)

and Hong and Nekipelov (2010). LATT is the average treatment effect among those compliers who

actually receive the treatment. Of course, in the subpopulation of compliers the condition D = 1 is

equivalent to Z = 1, i.e. LATT can also be written as E[Y (1)− Y (0) | D(1) = 1, D(0) = 0, Z = 1].

In particular, if Z is an instrument that satisfies Assumption 1 unconditionally (say Z is assigned

completely at random), then LATT coincides with LATE. Our interest in LATT is motivated

mainly by the fact that it can serve as a bridge between the IV assumptions and unconfoundedness

(this connection will be developed shortly).

Under Assumption 1 one can also interpret LATE/LATT as the ATE/ATT of Z on Y divided

by the ATE/ATT of Z on D. More formally, define W (z) ≡ D(z)Y (1) + (1 − D(z))Y (0) and

W ≡W (Z) = ZW (1) + (1−Z)W (0). It is easy to verify that W = DY (1) + (1−D)Y (0) = Y and

τ = E[W (1)−W (0)]
/
E[D(1)−D(0)] (1)

τt = E[W (1)−W (0) | Z = 1]
/
E[D(1)−D(0) | Z = 1]. (2)
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The quantities on the right hand side of (1) and (2) are nonparametrically identified from the joint

distribution of the observables (Y,D,Z,X1). We denote the conditional probability P (Z = 1 | X1)

by q(X1) and refer to it as the instrument propensity score to distinguish it from the “regular”

propensity score, the conditional probability of being treated. Under Assumption 1, the following

identification results are implied, for example, by Theorem 3.1 in Abadie (2003):

E[W (1)−W (0)] = E

[
ZY

q(X1)
− (1− Z)Y

1− q(X1)

]
≡ ∆ (3)

E[D(1)−D(0)] = E

[
ZD

q(X1)
− (1− Z)D

1− q(X1)

]
≡ Γ (4)

E[W (1)−W (0)|Z = 1] = E

[
q(X1)

(
ZY

q(X1)
− (1− Z)Y

1− q(X1)

)]/
E[q(X1)] ≡ ∆t (5)

E[D(1)−D(0)|Z = 1] = E

[
q(X1)

(
ZD

q(X1)
− (1− Z)D

1− q(X1)

)]/
E[q(X1)] ≡ Γt. (6)

That is, τ = ∆/Γ and τt = ∆t/Γt.

The unconfoundedness assumption, introduced by Rosenbaum and Rubin (1983), is also known

in the literature as selection-on-observables, conditional independence, or ignorability. We say that

treatment assignment is unconfounded conditional on a subset X2 of the vector X if

Assumption 2 (Unconfoundedness): Y (1) and Y (0) are mean-independent of D conditional on

X2, i.e. E[Y (d)|D,X2] = E[Y (d)|X2], d ∈ {0, 1}.

Assumption 2 is stronger than Assumption 1 in that it rules out unobserved factors related to

the potential outcomes playing a systematic role in selection to treatment. Furthermore, it permits

nonparametric identification of ATE = E[Y (1) − Y (0)] as well as ATT = E[Y (1) − Y (0)|D = 1].

For example, ATE and ATT can be identified by expressions analogous to (3) and (4), respectively:

replace Z with D and q(X1) with p(X2) = P (D = 1|X2). (The condition E[Y (0)|D,X2] =

E[Y (0)|X2] is actually sufficient for identifying ATT.)

As mentioned above, ATE and ATT are often of more interest to decision makers than local

treatment effects, but are not generally identified under Assumption 1 alone. A partial exception

is when the instrument Z satisfies a strengthening of the monotonicity property called one-sided

non-compliance (see, e.g., Frölich and Melly 2013a):

Assumption 3 (One-sided non-compliance): P [D(0) = 0] = 1.

Assumption 3 dates back to (at least) Bloom (1984), who estimated the effect of a program in

the presence of “no shows”. The stated condition means that those individuals for whom Z = 0 are
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excluded from the treatment group, while those for whom Z = 1 generally have the option to accept

or decline treatment. Hence, there are no always-takers; non-compliance with the intention-to-treat

variable Z is only possible when Z = 1. More formally, for such an instrument D = ZD(1), and so

D = 1 implies D(1) = 1 (the treated are a subset of the compliers). Therefore,

LATT =E[Y (1)− Y (0) | D(1) = 1, D(0) = 0, D = 1]

=E[Y (1)− Y (0) | D(1) = 1, D = 1]

=E[Y (1)− Y (0) | D = 1] = ATT. (7)

Thus, under one-sided non-compliance, ATT=LATT. The ATE parameter, on the other hand,

remains generally unidentified under Assumptions 1 and 3 alone.

In Section 4 we will show how one can test Assumption 2 when a binary instrument, valid

conditional on X1 and satisfying one-sided non-compliance, is available. Frölich and Lechner (2010)

also consider some consequences for identification of the IV assumption and unconfoundedness

holding simultaneously (without one-sided non-compliance), but they do not discuss estimation by

inverse probability weighting, propose a test, or draw out implications for efficiency.

3 The estimators and their asymptotic properties

3.1 Inverse propensity weighted estimators of LATE and LATT

Let {(Yi, Di, Zi, X1i)}ni=1 denote a random sample of observations on (Y,D,Z,X1). The proposed

inverse probability weighted (IPW) estimators for τ and τt are based on sample analog expressions

for (3) through (6):

τ̂ =

n∑
i=1

{
ZiYi
q̂(X1i)

− (1− Zi)Yi
1− q̂(X1i)

}/ n∑
i=1

{
ZiDi

q̂(X1i)
− (1− Zi)Di

1− q̂(X1i)

}
,

τ̂t =

n∑
i=1

q̂(X1i)

{
ZiYi
q̂(X1i)

− (1− Zi)Yi
1− q̂(X1i)

}/ n∑
i=1

q̂(X1i)

{
ZiDi

q̂(X1i)
− (1− Zi)Di

1− q̂(X1i)

}
,

where q̂(·) is a suitable nonparametric estimator of the the instrument propensity score function.

If there are no covariates in the model, then both τ̂ and τ̂t reduce to

τ̂ = τ̂t =

{∑n
i=1 ZiYi∑n
i=1 Zi

−
∑n

i=1(1− Zi)Yi∑n
i=1(1− Zi)

}/{∑n
i=1 ZiDi∑n
i=1 Zi

−
∑n

i=1(1− Zi)Di∑n
i=1(1− Zi)

}
,
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which is the LATE estimator developed in Imbens and Angrist (1994) and is also known as the

Wald estimator, after Wald (1940).

Following HIR, we use the series logit estimator (SLE) to estimate q(·). The first order asymp-

totic results presented in Section 3.2 do not depend critically on this choice—the same conclusions

could be obtained under similar conditions if other suitable estimators of q(·) were used instead. For

example, Ichimura and Linton (2005) use local polynomial regression and Abrevaya et al. (2013)

use higher order kernel regression. We opt for the SLE for three reasons: (i) it is automatically

bounded between zero and one; (ii) it allows for a more unified treatment of continuous and dis-

crete covariates in practice; (iii) the curse of dimensionality affects the implementability of the

SLE less severely. (We do not say that the SLE is immune to dimensionality; however, if one uses,

say, higher order local polynomials and X1 is large, then one either needs a very large bandwidth

or an astronomical number of observations just to be able to compute each q̂(X1i), at least if the

kernel weights have bounded support. A sufficiently restricted version of the SLE is always easy to

compute.)

We implement the SLE using power series. Let λ = (λ1, ..., λr)
′ ∈ Nr0 be a r-dimensional vector

of non-negative integers where r is the dimension of X1. Define a norm for λ as |λ| =
∑r

j=1 λj ,

and for x1 ∈ Rr, let xλ1 =
∏r
j=1 x

λj
1j . Let {λ(k)}∞k=1 be an enumeration of Nr0 such that |λ(k)| is

non-decreasing in k. For any integer K > 0, define RK(x1) = (x
λ(1)
1 , ..., x

λ(K)
1 )′ as a K-vector of

power functions. Let the Λ(a) = exp(a)/(1 + exp(a)) be the logistic cdf. The SLE for q(x1) is

defined as q̂(x1) = Λ
(
RK(x1)′π̂K

)
where

π̂K = arg max
πK∈RK

n∑
i=1

(
Zi · ln Λ

(
RK(X1i)

′πK
)

+ (1− Zi) · ln
(
1− Λ

(
RK(X1i)

′πK
)))

.

The asymptotic properties of q̂(x1) are discussed in Appendix A of HIR.

3.2 First order asymptotic results

We now state conditions under which τ̂ and τ̂t are
√
n-consistent, asymptotically normal and

efficient.

Assumption 4 (Distribution of X1): (i) The distribution of the r-dimensional vector X1 is abso-

lutely continuous with probability density f(x1); (ii) the support of X1, denoted X1, is a Cartesian

product of compact intervals; (iii) f(x1) is twice continuously differentiable, bounded above, and

bounded away from 0 on X1.
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Though standard in the literature, this assumption is restrictive in that it rules out discrete

covariates. This is mostly for expositional convenience; after stating our formal result, we will

discuss how to incorporate discrete variables into the analysis.

Next we impose restrictions on various conditional moments of Y , D and Z. We define mz(x1) =

E[Y | X1 = x1, Z = z] and µz(x1) = E[D | X1 = x1, Z = z]. Then:

Assumption 5 (Conditional Moments of Y and D): mz(x1) and µz(x1), are continuously differ-

entiable over X1 for z = 0, 1.

Assumption 6 (Instrument Propensity Score): (i) q(x1) is continuously differentiable of order

q̄ ≥ 7 · r; (ii) q(x1) is bounded away from zero and one on X1.

The last assumption specifies the estimator used for the instrument propensity score function.

Assumption 7 (Instrument Propensity Score Estimator): q(x1) is estimated by SLE with a power

series satisfying K = a · nν for some 1/(4(q̄/r − 1)) < ν < 1/9 and a > 0.

If q(x1) is instead estimated by local polynomial regression or higher order kernel regression,

then it is sufficient to assume less smoothness; specifically, q(x1) must be continuously differentiable

only of order q̄ > r for the theoretical results to hold.

The first-order asymptotic properties of τ̂ and τ̂t are stated in the following theorem.

Theorem 1 (Asymptotic properties of τ̂ and τ̂t): Suppose that Assumption 1 and Assumptions 4

through 7 are satisfied. Then:

(a)
√
n(τ̂ − τ)

d→ N (0,V) and
√
n(τ̂t − τt)

d→ N (0,Vt), where V = E[ψ2(Y,D,Z,X1)] and

Vt = E[ψ2
t (Y,D,Z,X1)] with the functions ψ and ψt given by

ψ(y, d, z, x1) =
1

Γ

{
z
[
y −m1(x1)− τ(d− µ1(x1))

]
q(x1)

−
(1− z)

[
y −m0(x1)− τ(d− µ0(x1))

]
1− q(x1)

+m1(x1)−m0(x1)− τ [µ1(x1)− µ0(x1)]

}
,

ψt(y, d, z, x1) =
q(x1)

E(Z)Γt

{
z
[
y −m1(x1)− τt(d− µ1(x1))

]
q(x1)

−
(1− z)

[
y −m0(x1)− τt(d− µ0(x1))

]
1− q(x1)

+
z
[
m1(x1)−m0(x1)− τt(µ1(x1)− µ0(x1))

]
q(x1)

}
;

(b) V is the semiparametric efficiency bound for LATE with or without the knowledge of q(x1);

9



(c) Vt the semiparametric efficiency bound for LATT without the knowledge of q(x1).

Comments 1. The result on τ̂ is analogous to Theorem 1 of HIR; the result on τ̂t is analogous

to Theorem 5 of HIR. Theorem 1 shows directly that the IPW estimators of LATE and LATT

presented in this paper are first order asymptotically equivalent to the matching/imputation based

estimators developed by Frölich (2007) and Hong and Nekipelov (2010).

2. Theorem 1 follows from the fact that, under the conditions stated, τ̂ and τ̂t can be expressed

as asymptotically linear with influence functions ψ and ψt, respectively:

√
n
(
τ̂ − τ) =

1√
n

n∑
i=1

ψ(Yi, Di, Zi, X1i) + op(1), (8)

√
n
(
τ̂t − τt

)
=

1√
n

n∑
i=1

ψt(Yi, Di, Zi, X1i) + op(1). (9)

These representations are developed in Appendix A, along with the rest of the proof.

3. To use Theorem 1 for statistical inference, one needs consistent estimators for V and Vt.

Such estimators can be obtained by constructing uniformly consistent estimates for ψ and ψt and

then averaging the squared estimates over the sample observations {(Yi, Di, Zi, X1i)}ni=1. To be

more specific, let m̂1(x1) and m̂0(x1) be the series estimators for m1(x1) and m0(x1):

m̂1(x1) =

(
N∑
i=1

YiZi
q̂(X1i)

RK(X1i)

)′( N∑
i=1

RK(X1i)R
K(X1i)

′

)−1

RK(x1),

m̂0(x1) =

(
N∑
i=1

Yi(1− Zi)
1− q̂(X1i)

RK(X1i)

)′( N∑
i=1

RK(X1i)R
K(X1i)

′

)−1

RK(x1), (10)

where RK(x1) is the same power series as in the SLE. As in HIR and Donald and Hsu (2013), it is

true that supx1∈X1
|m̂1(x1)−m1(x1)| = op(1) and supx1∈X1

|m̂0(x1)−m0(x1)| = op(1). In addition,

let µ̂1(x1) and µ̂0(x1) be defined by replacing Yi with Di in (10), and let Ê(Z) =
∑n

i=1 q̂(X1i)/n.

Construct the functions ψ̂(y, d, z, x1) and ψ̂t(y, d, z, x1) by replacingm0(x1), m1(x1), µ0(x1), µ1(x1),

q(x1), τ , τt, Γ, Γt, and E(Z) with their estimators. (The estimators for Γ and Γt are the denomi-

nators of τ̂ and τ̂t, respectively.) Finally, let

V̂ =
1

n

n∑
i=1

ψ̂(Yi, Di, Zi, X1i)
2, V̂t. =

1

n

n∑
i=1

ψ̂t(Yi, Di, Zi, X1i)
2. (11)

It is straightforward to show that V̂ p→ V and V̂t
p→ Vt.
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4. In part (b), the semiparametric efficiency bound for τ is given by Frölich (2007) and Hong

and Nekipelov (2010). In particular, the bounds are the same with or without the knowledge of the

instrument propensity score function q(x1). If the instrument propensity score function is known,

τ can also be consistently estimated by using the true instrument propensity score throughout in

the formula for τ̂ . Denote this estimator by τ̂∗. Using Remark 2 of HIR, the asymptotic variance

of
√
n(τ̂∗ − τ) is V∗ = E[(ψ∗(Yi, Di, Zi, X1i))

2] with

ψ∗(y, d, z, x1) = ψ(y, d, z, x1) + (z − q(x1))
(m1(x1)− τµ1(x1)

q(x1)
+
m0(x1)− τµ0(x1)

1− q(x1)

)
.

It can be shown that V ≤ V∗. Therefore, the IPW estimator for τ based on the true instrument

propensity score function is less efficient than that based on estimated instrument propensity score

function.

5. In part (c), the semiparametric efficiency bound for τt without knowledge of the instrument

propensity score function is derived in Hong and Nekipelov (2010). The efficiency bound for τt

with knowledge of the instrument propensity score function has not been given in the literature

yet. However, by Corollary 1 and Theorem 5 of HIR, the semiparametrically efficient IPW estimator

for τt is given by

τ̂∗t,se =
n∑
i=1

q(X1i)

{
ZiYi
q̂(X1i)

− (1− Zi)Yi
1− q̂(X1i)

}/ n∑
i=1

q(X1i)

{
ZiDi

q̂(X1i)
− (1− Zi)Di

1− q̂(X1i)

}
.

The asymptotic variance of
√
n(τ̂∗t,se − τ) is V∗t,se = E[(ψ∗t,se(Yi, Di, Zi, X1i))

2] with

ψ∗t,se(y, d, z, x1) =
q(x1)

E(Z)Γt

{
z
[
y −m1(x1)− τt(d− µ1(x1))

]
q(x1)

−
(1− z)

[
y −m0(x1)− τt(d− µ0(x1))

]
1− q(x1)

+m1(x1)−m0(x1)− τt(µ1(x1)− µ0(x1))

}
.

It is true that V∗t,se ≤ Vt, i.e., knowledge of the instrument propensity score allows for more efficient

estimation of τt. On the other hand, if the instrument propensity score function is known, then τt

can also be consistently estimated by using q(X1i) throughout in the formula for τ̂∗t,se. It follows

from the discussion after Corollary 1 of HIR that τ̂t and the latter estimator cannot generally be

ranked in terms of efficiency.

6. Suppose that X1 contains discrete covariates whose possible values partition the population

into s̄ subpopulations or cells. Let the random variable S ∈ {1, . . . , s̄} denote the cell a given

unit is drawn from. For each s one can define q(x̃1, s) = P (Z = 1 | X̃1 = x̃1, S = s), where X̃1
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denotes the continuous components of X1, and estimate this function by SLE on the correspond-

ing subsample. Then LATE and LATT can be estimated in the usual way by using q̂(X̃1i, Si)

as the instrument propensity score (this is equivalent to computing the weighted average of the

cell-specific LATE/LATT estimates). Under suitable modifications of Assumptions 4 through 7,

the LATE estimator so defined possesses an influence function ψ(y, d, z, x̃1, s) that is isomorphic

to ψ(y, d, z, x1); one simply replaces the functions q(x1), mz(x1), µz(x1) with their cell-specific

counterparts q(x̃1, s), mz(x̃1, s) = E[Y | X̃1 = x̃1, S = s, Z = z], etc. (See Abrevaya et al. (2013),

Appendix D, for a formal derivation in a similar context.) However, this approach may not be

feasible when the number of cells is large, which is the case in many economic applications. See

Comment 8 for restricted estimators more easily implementable in practice.

7. The changes in the regularity conditions required by the presence of discrete variables

are straightforward. For example, Assumption 4 needs to hold for the conditional distribution

X̃1 | S = s for any s. The functions mz(x̃1, s), etc., need to be continuously differentiable in x̃ for

any s. Finally, in Assumptions 6 and 7, r is to be redefined as the dimension of X̃1.

8. It is easy to specify the SLE so that it implements the sample splitting estimator described

in Comment 6 above in a single step. Given a vector RK(x̃1) of power functions in x̃1, use

(1{s=1}R
K(x̃1)′, . . . , 1{s=s̄}R

K(x̃1)′) in the estimation, i.e., interact the powers of x̃1 with each

subpopulation dummy. However, if s̄ is large, the number of observations available from some of

the subpopulations can be very small (or zero) even for large n. The SLE is well suited for bridging

over data-poor regions using functional form restrictions. E.g., one can use, for some L ≤ K,

RK,L(x1) = (1{s=1}R
L(x̃1)′, . . . , 1{s=s̄}R

L(x̃1)′, x̃
λ(L+1)
1 , . . . , x̃

λ(K)
1 )′,

i.e., one only lets lower order terms vary across subpopulations. Alternatively, suppose that X1 =

(X̃ ′1, I1, I2)′ where I1 and I2 are two indicators (so that s̄ = 4). Then one may implement the SLE

with (RK(x̃1)′, RK(x̃1)′I1, RK(x̃1)′I2), but without RK(x̃1)′I1I2. This constrains the attributes

I1 and I2 to operate independently from each other in affecting the probability that Z = 1. Of

course, the two types of restrictions can be combined. The asymptotic theory is unaffected if the

restrictions are relaxed appropriately as n becomes large (e.g., L→∞ when K →∞ in the required

manner). Furthermore, as restricting the SLE can be thought of as a form of smoothing, results

by Li et al. (2009) suggest that there might be small sample MSE gains relative to the “sample

splitting” method (unless of course the misspecification bias is too large).
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4 Testing for unconfoundedness

4.1 The proposed test procedure

If treatment assignment is unconfounded conditional on a subset X2 of X, then, under regularity

conditions, one can consistently estimate ATT using the estimator proposed by HIR:

β̂t =
n∑
i=1

p̂(X2i)

{
DiYi
p̂(X2i)

− (1−Di)Yi
1− p̂(X2i)

}/ n∑
i=1

p̂(X2i),

where p̂(x2) is the series logit estimator of p(x2) = P (D = 1|X2 = x2), the propensity score function.

More generally, let ρd(x2) = E[Y |D = d,X2 = x2] for d = 0, 1. Under regularity conditions,

β̂t converges in probability to βt ≡ E[Y |D = 1] − E[ρ0(X2)|D = 1]. If the unconfoundedness

assumption holds, then ρ0(X2) = E[Y (0) | D = 1, X2], and βt reduces to ATT.

Given a binary instrument that is valid conditional on a subset X1 of X, one-sided non-

compliance implies ATT=LATT, and hence ATT can also be consistently estimated by τ̂t. On

the other hand, if the unconfoundedness assumption does not hold, then τ̂t is still consistent for

ATT, but β̂t is in general not consistent for ATT. Hence, we can test the unconfoundedness as-

sumption (or at least a necessary condition of it) by comparing τ̂t with β̂t. In particular, let

φt(y, d, x2) =
p(x2)

p

{
d(y − ρ1(x2))

p(x2)
− (1− d)(y − ρ0(x2))

1− p(x2)
+
d(ρ1(x2)− ρ0(x2)− βt)

p(x2)

}
,

where p = P (D = 1). Let

Assumption 4′ be the analog of Assumption 4 stated for X2;

Assumption 5′ be the analog of Assumption 5 stated for ρd(x2), d = 0, 1;

Assumption 6′ be the analog of Assumption 6 stated for p(x2);

Assumption 7′ be the analog of Assumption 7 stated for p(x2),

where by ’analog’ we mean that all parameters are object-specific, i.e., Assumption 4′ is not meant

to impose, say, dim(X2) = dim(X1). The asymptotic properties of the difference between τ̂t and

β̂t are summarized in the following theorem:

Theorem 2 Suppose that Assumption 1, Assumptions 4 through 7, and Assumptions 4′ through

7′ are satisfied. If, in addition, σ2 ≡ E[(ψt(Y,D,Z,X1)− φt(Y,D,X2))2] > 0, then
√
n[(τ̂t − β̂t)−

(τt − βt)]
d→ N(0, σ2). If Assumptions 2 and 3 also hold, then τt = βt=(L)ATT.
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As shown by HIR, under Assumptions 4′ through 7′ the asymptotic linear representation of β̂t is

√
n(β̂t − βt) =

1√
n

n∑
i=1

φt(Yi, Di, X2i) + op(1).

Theorem 2 follows directly from this result and Theorem 1. Let ψ̂t(·) and φ̂t(·) be uniformly

consistent estimators of ψt and φt obtained, e.g., as in comment 3 after Theorem 1. A consistent

estimator for σ2 can then be constructed as

σ̂2 =
1

n

n∑
i=1

(
ψ̂t(Yi, Di, Zi, X1i)− φ̂t(Yi, Di, X2i)

)2
.

Thus, if one-sided non-compliance holds, one can use a simple z-test with the statistic
√
n(τ̂t−β̂t)/σ̂

to test unconfoundedness via the null hypothesis H0 : τt = βt. Since the difference between τt and

βt can generally be of either sign, a two-sided test is appropriate.

For the z-test to “work”, it is also required that σ2 > 0. It is difficult to list all cases where

σ2 = 0, but here we give one case that is easy to verify in practice. The proof is available in the

online supplement.

Lemma 1 Suppose that Assumption 1, Assumptions 4 through 7, and Assumptions 4′ through 7′

are satisfied. If, in addition, V ar(Y (0)) = 0, then τt = βt and
√
n(τ̂t − β̂t) = op(1).

Further comments 1. The result in Theorem 2 holds without unconfoundedness, provid-

ing consistency against violations for which βt 6= τt. Nevertheless, as suggested by Lemma 1,

unconfoundedness might be violated even when H0 holds. E.g., the condition E[Y (0)|D,X2] =

E[Y (0)|X2] is actually sufficient to identify and consistently estimate ATT. Therefore, our test will

not have power against cases where E[Y (0)|D,X2] = E[Y (0)|X2] but E[Y (1)|D,X2] 6= E[Y (1)|X2].

2. Similarly, the test does not rely on one-sided non-compliance per se; it can be applied in any

other situation where ATT and LATT is known to coincide. The empirical Monte Carlo exercise

presented in Section 6 states another set of conditions on Z and D(0) under which this is true.

Nevertheless, we still consider one-sided non-compliance as a leading case in practice (e.g. because

it is easily testable).

3. The proposed test is quite flexible in that it does not place any restrictions on the relationship

between X1 and X2. The two vectors can overlap, be disjoint, or one might be contained in

the other. The particular case in which X2 is empty corresponds to testing whether treatment

assignment is completely random.
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4. If the instrument is not entirely trusted (even with conditioning), then the interpretation of

the test should be more conservative; namely, it should be regarded as a joint test of unconfound-

edness and the IV conditions. Thus, in case of a rejection one cannot even be sure that LATE and

(L)ATT are identified.

5. Our test generalizes to one-sided non-compliance of the form: P [D(1) = 1] = 1, i.e., where all

units with Z = 1 will get treatment and only part of the units with Z = 0 can get treatment. To this

end, define LATE for the non-treated as LATNT≡ τnt ≡ E[Y (1)−Y (0)|D(1) = 1, D(0) = 0, D = 0]

and ATE for the non-treated as ATNT≡ βnt ≡ E[Y (1) − Y (0)|D = 0]. Similarly to (7), we have

LATNT=ATNT when P [D(1) = 1] = 1. We can estimate τnt by

τ̂nt =

n∑
i=1

(1− q̂(X1i))

{
ZiYi
q̂(X1i)

− (1− Zi)Yi
1− q̂(X1i)

}/ n∑
i=1

(1− q̂(X1i))

{
ZiDi

q̂(X1i)
− (1− Zi)Di

1− q̂(X1i)

}
.

The corresponding estimator for βnt, denoted β̂nt, has the same form as the numerator of τ̂nt with

Di replacing Yi and p̂(X2i) replacing q̂(X1i). The logic of the test remains the same: (L)ATNT can

be consistently estimated by τ̂nt as well as β̂nt under the unconfoundedness assumption. However,

if unconfoundedness does not hold, then τ̂nt is still consistent for ATNT, but β̂nt is generally not.

The technical details are similar to the previous case and are omitted.

6. If P [D(0) = 0] = 1 and P [D(1) = 1] = 1 both hold then Z = D and instrument validity and

unconfoundedness are one and the same. Furthermore, in this case
√
n(τ̂t − β̂t) = op(1).

4.2 The implications of unconfoundedness

What are the benefits of (potentially) having the unconfoundedness assumption at one’s disposal

in addition to IV conditions? An immediate one is that the ATE parameter also becomes identified

and can be consistently estimated, for example, by the IPW estimator proposed by HIR or by

nonparametric imputation as in Hahn (1998).

A more subtle consequence has to do with the efficiency of β̂t and τ̂t as estimators of ATT. If

an instrument satisfying one-sided compliance is available, and the unconfoundedness assumption

holds at the same time, then both estimators are consistent. Furthermore, the asymptotic variance

of τ̂t attains the semiparametric efficiency bound that prevails under the IV conditions alone,

and the asymptotic variance of β̂t attains the corresponding bound that can be derived from the

unconfoundedness assumption alone. The simple conjunction of these two identifying conditions

does not generally permit an unambiguous ranking of the efficiency bounds even when X1 = X2.
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Nevertheless, by taking appropriate linear combinations of β̂t and τ̂t, one can obtain estimators

that are more efficient than either of the two. This observation is based on the following elementary

lemma:

Lemma 2 Let A0 and A1 be two random variables with var(A0) <∞, var(A1) <∞ and var(A1−

A0) > 0. Define Aa = (1 − a)A0 + aA1 for any a ∈ R. Let ā = var(A0)−cov(A0,A1)
var(A1−A0) . Then: (a)

var(Aā) ≤ var(Aa) for all a ∈ R; (b) var(Aā) < var(A0) when ā 6= 0, i.e. var(A0) 6= cov(A0, A1);

(c) var(Aā) < var(A1) when ā 6= 1, i.e. var(A1) 6= cov(A0, A1).

Let β̂t(a) = (1 − a)β̂t + aτ̂t and Vt(a) = var[(1 − a)φti + aψti], where ψti = ψt(Yi, Di, Zi, X1i)

and φti = φt(Yi, Di, X2i). Lemma 2 implies that for any a ∈ R, β̂t(a) is consistent for τt and

is asymptotically normal with asymptotic variance Vt(a), i.e.
√
n(β̂t(a) − τt)

d→ N (0,Vt(a)). The

optimal weight ā can be obtained as

ā =
var(φt)− cov(φt, ψt)

var(φt) + var(ψt)− 2cov(φt, ψt)
,

so that Vt(ā) ≤ Vt(a) for all a ∈ R. In other words, β̂t(ā) will be the most efficient estimator among

all linear combinations of β̂t and τ̂t. Although ā is unknown in general, it can be consistently

estimated by

â =

∑n
i=1 φ̂t(Yi, Di, Zi, X1i)

(
φ̂t(Yi, Di, Zi, X1i)− ψ̂t(Yi, Di, X2i)

)∑n
i=1

(
φ̂t(Yi, Di, Zi, X1i)− ψ̂t(Yi, Di, X2i)

)2 .

The asymptotic equivalence lemma, e.g., Lemma 3.7 of Wooldridge (2010), implies that
√
n(β̂t(â)−

τt) has the same asymptotic distribution as
√
n(β̂t(ā)− τt).

If V ar(φt) = Cov(φt, ψt), then ā = 0, which implies that β̂t itself is more efficient than τ̂t (or

any linear combination of the two). We give sufficient conditions for this result.

Theorem 3 Suppose that Assumption 1 parts (i), (iii), (iv), (v) and Assumption 3 are satisfied,

and let V = (Y (0), Y (1)). If, in addition, X1 = X2 = X,

E(V | Z,D,X) = E(V | X) and E(V V ′ | Z,D,X) = E(V V ′ | X), (12)

then ā = 0.

The proof of Theorem 3 is provided in Appendix B. The conditions of Theorem 3 are stronger than

those of Theorem 2. The latter theorem only requires that the IV assumption and unconfoundedness

16



both hold at the same time, which in general does not imply the stronger joint mean-independence

conditions given in (12). If the null of unconfoundedness is accepted due to (12) actually holding,

then β̂t itself is the most efficient estimator of ATT in the class {β̂t(a) : a ∈ R}.

The theoretical results discussed in this subsection are qualified by the fact that in practice one

needs to pre-test for unconfoundedness, while the construction of β̂t(ā) takes this assumption as

given. Deciding whether or not to take a linear combination based on the outcome of a test will

erode some of the theoretically possible efficiency gain when unconfoundedness does hold, and will

introduce at least some bias through type 2 errors. (A related problem, the impact of a Hausman

pre-test on subsequent hypothesis tests, was studied recently by Guggenberger 2010.) We will

explore the effect of pre-testing in some detail through the Monte Carlo simulations presented in

the next section.

5 Monte Carlo simulations

We employ a battery of simulations to gain insight into how accurately the asymptotic distribution

given in Theorem 1 approximates the finite sample distribution of our LATE estimator in various

scenarios and to gauge the size and power properties of the proposed test statistic. The scenarios

examined differ in terms of the specification of the instrument propensity score, the choice of the

power series used in estimating it, and the trimming applied to the estimator. All these issues are

known to be central for the finite sample properties of an IPW estimator. We also address the

pre-testing problem raised at the end of Section 4; namely, we examine how much of the theoretical

efficiency gain afforded by unconfoundedness is eroded by testing for it, and also the costs resulting

from type 2 errors in situations when the assumption does not hold.

We use DGPs of the following form:

Y = (1−D) · (g(X) + ε), D = Z · 1(bε+ (1− b)ν > h(X)), Z = 1(q(X) > U),

where b ∈ [0, 1], X = (X(1), . . . , X(5)), g(X) = X(1) + . . . + X(5), h(X) = X(4) − X(5); the

components of X and the unobserved errors ε, ν, U are mutually independent with

X(i) ∼ unif[0, 1], ε ∼ unif[−1, 1], ν ∼ unif[−1, 1], U ∼ unif[0, 1].

We consider five different specifications for the instrument propensity score function: (i) Constant:

q(X) = 0.6; (ii) Linear 1: q(X) = Λ(−2.5 + g(X)); (iii) Linear 2: q(X) = Λ(−4.5 + g(X)); (iv)
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Figure 1: The distribution of q(X)

Rational expression 1: q(X) = Λ(2−5/g(X)); (v) Rational expression 2: q(X) = Λ(−1+2.5/g(X)).

The distribution of the random variable q(X) in the various cases is shown on Figure 1.

The constant specification (i) represents the benchmark case in which the instrument is com-

pletely randomly assigned; it will also serve as an illustration of how covariates that q(·) does not

depend on can still be used in estimation to improve efficiency. The linear specifications (ii) and

(iii) are functions that are easily estimable by SLE; in fact, here SLE acts as a correctly specified or

overspecified parametric estimator. Model (iii) will also pose a challenge to the asymptotic results

as q(X) concentrates a lot of mass close to zero. Finally, the rational models (iv) and (v) are

intended to be true “nonparametric” specifications in that any implementation of the SLE based

on a fixed number of powers is, in theory, only an approximation to the true function (though a

quadratic approximation seems already adequate in practice). Of the two, specification (v) stays

safely away from zero and one, while (iv) puts a fair amount of weight in a close neighborhood of

zero.

Clearly, the DGP satisfies one-sided non-compliance as D(0) = 0. The value of the parameter

b ∈ [0, 1] governs whether the unconfoundedness assumption is satisfied. In particular, when b = 0

unconfondedness holds conditional on X2 = X. Larger values of b correspond to more severe

violations of the unconfoundedness assumption. The instrument Z is valid conditional on X1 = X
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for any b.

To make a credible case for unconfoundedness in practice, one often needs a large number of

theoretically relevant covariates. Here we use five, which is likely insufficient in a lot of applications.

Nevertheless, X is large enough to allow us to make a number of salient points without posing an

undue computational burden. In Section 6 we will present an additional, smaller Monte Carlo

exercise where the setup is based on a real data set with up to 14 covariates.

5.1 The finite sample distribution of the LATE estimator

In our first exercise we study the finite sample distribution of the LATE estimator τ̂ . The DGP is

designed so that the true value of the LATE parameter is independent of q(·) and is approximately

equal to τ = −2.73 for b = 0.5, the value chosen for this exercise.

Table C.1 in Appendix C shows various statistics characterizing the finite sample distribution

of τ̂ and its estimated standard error for n = 250, n = 500 and n = 2500. In particular, we

report the bias of τ̂ , the standard error of T ≡
√
n(τ̂ − τ), the mean estimate of this standard

error based on comment 3 after Theorem 1, and the tail probabilities of the studentized estimator

S ≡ (τ̂ − Eτ̂)/ŝ.e.(τ̂) associated with the critical values -1.645 and 1.645. The number of Monte

Carlo repetitions is 5000.

For each specification of q(·), we consider a number of implementations of the SLE. We start

with a constant model for the instrument propensity score and then add linear, quadratic and

cubic terms (all powers of Wi and all cross products up to the given order). We use the same

power series to estimate all other nonparametric components of the influence function (used in

estimating the standard error of τ̂). The choice of the power series in implementing the SLE is an

important one; it mimics the choice of the smoothing parameter in kernel-based or local polynomial

estimation. To our knowledge, there is no well-developed theory to guide the power series choice in

finite samples (though Imbens et al. 2007 is a step in this direction); hence, a reasonable strategy

in practice would involve examining the sensitivity of results to various specifications as is done in

this simulation.

When using an IPW estimator in practice, the estimated probabilities are often trimmed to

prevent them from getting too close to, or crossing, the boundaries of the [0,1] interval. Therefore,

we also apply trimming to the raw estimates delivered by the SLE. The column “Trim.” in Table C.1

denotes the truncation applied to the estimated instrument propensity scores. If the fitted value
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q̂(Xi) is strictly less than the threshold γ ∈ (0, 1/2), we reset q̂(Xi) to γ. Similarly, if q̂(Xi) is

strictly greater than 1 − γ, we reset q̂(Xi) to 1 − γ. We use γ = 0.5% (mild trimming) and,

occasionally, γ = 5% (aggressive trimming). The latter is only applied to specifications (ii=Lin. 2)

and (iv=Rat. 1), where the boundary problem is the most severe.

Many aspects of the results displayed in Table C.1 merit discussion.

First, looking at the simplest case when neither q nor q̂ depends on X, we see that even

for n = 250, the bias of the LATE estimator is very small, its estimated standard error, too, is

practically unbiased, and the distribution of the studentized estimator has tail probabilities close

to standard normal. Even though the true instrument propensity score does not depend on the

covariates, one can achieve a substantial reduction in the standard error of the estimator by allowing

q̂ to be a function of X, as suggested by Theorem 3 of Frölich and Melly (2013b). For example,

when q̂(X) is linear, the standard error, for n = 2500, falls from about 3.21 to 2.42, roughly a 25%

reduction. Nevertheless, we can also observe that if q̂(X) is very generously parameterized (here:

quadratic), then in small samples the “noise” from estimating too many zeros can overpower most

of this efficiency gain. Specifically, for n = 250 the standard error of the scaled estimator is almost

back up to the no-covariate case (3.16 vs. 3.23). Still, the efficiency gains are recaptured for large

n.

A second, perhaps a bit more subtle, point can be made about the standard error of τ̂ using

the Linear 1 specification for q(X). Here the linear SLE acts as a correctly specified parametric

estimator while the estimated standard errors are computed under the assumption that q is non-

parametrically estimated. Therefore, the estimated standard errors are downward-biased, reflecting

the fact that even when the instrument propensity score is known up to a finite dimensional pa-

rameter vector, it is more efficient to use a nonparametric estimator in constructing τ̂ as in Chen

et al. (2008). Indeed, as the SLE adds quadratic and cubic terms, i.e., it starts ’acting’ more as

a nonparametric estimator, the bias vanishes from the estimated standard errors, provided that

the sample size expands simultaneously (n = 2500). Furthermore, the asymptotic standard errors

associated with the quadratic and cubic SLE (2.72 and 2.93, respectively) are lower than for the

linear (3.11). In cases where the variance of τ̂ is underestimated, the studentized estimator tends

to have more mass in its tails than the standard normal distribution (see, e.g., the results for the

linear SLE).

Third, as best demonstrated by the Linear 2 model for the instrument propensity score, the limit
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distribution provided in Theorem 1 can be a poor finite sample approximation when q(X) gets close

to zero or one with relatively high probability. This is especially true when the estimator for q(X) is

overspecified (quadratic or cubic). For n = 250 and n = 500, the bias of τ̂ ranges from moderate to

severe and is exacerbated by more aggressive trimming of q̂. For any series choice, the standard error

of the LATE estimator is larger than in the Linear 1 case (the 0.5% vs. 5% trimming does not change

the actual standard errors all that much). Furthermore, for q̂ quadratic or cubic, the estimated

standard errors are severely upward biased with mild trimming, and still very much biased, though

in the opposite direction, with aggressive trimming. Increasing the sample size to n = 2500 of

course lessens these problems, though judging from the tail probabilities, the standard normal can

remain a rather crude approximation to the studentized estimator. E.g., for the cubic SLE with

0.5% trimming the standard error is grossly overestimated and there is evidence of skewness. On

the other hand, for the linear and quadratic SLE the estimated asymptotic standard errors display

downward bias, presumably due to the “correct parametric specification” issue discussed in the

second point above. Somewhat surprisingly, though, the actual standard errors are the smallest for

the linear SLE; apparently, even for n = 2500, there is more than ’optimal’ noise in the quadratic

and cubic instrument propensity score estimates.

Fourth, when the instrument propensity score estimator is underspecified, τ̂ is an asymptotically

biased estimator of LATE. (Here ’underspecified’ refers to a misspecified model in the parametric

sense or, in the context of series estimation, extending the power series too slowly as the sample

size increases.) The bias is well seen in all cases in which the instrument propensity score depends

on X, but is estimated by a constant. The Rat. 1 and Rat. 2 models provide further illustration.

Here, any fixed power series implementation of the SLE is misspecified if regarded as a parametric

model, though the estimator provides an increasingly better approximation to q(·) as the power

series expands. For the Rat. 1 model, the bias of τ̂ indeed decreases in magnitude as the SLE

becomes more and more flexible, with the exception of n = 250. For Rat. 2, even the linear SLE

removes the bias almost completely and not much is gained, even asymptotically, by using a more

flexible estimator. For Rat. 1 there is noticeable asymptotic bias in estimating the standard error

of τ̂ , which would presumably disappear if the sample size and the power series both expanded

further. Nevertheless, for both rational models the normal approximation to τ̂ works reasonably

well in large samples across a range of implementations of the SLE.

Finally, the results as a whole show the sensitivity of τ̂ to the specification of the power series
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used in estimating the the instrument propensity score q(·). If the power series has too few terms

(or expands too slowly with the sample size), then τ̂ may be (asymptotically) biased. On the other

hand, using too flexible a specification for a given sample size can cause τ̂ to have severe small

sample bias and inflated variance, which is also estimated with bias. More aggressive trimming

of the instrument propensity score tends to increase the bias of τ̂ and reduce the bias of ŝ.e.(τ̂),

though to an uncertain degree.

5.2 Properties of the test and the pre-tested estimator

We first set b = 0 so that unconfoundedness holds for any specification of q(X) conditional on

X2 = X. All tests are conducted at the 5% nominal significance level and with X1 = X2 = X,

i.e., we drop the cases where q̂ is constant. To further economize on space, we also drop the 5%

truncation for the Rat. 1 specification. In each of the remaining cases we consider four estimators

of (L)ATT: τ̂t, β̂t, their combination β̂t(â), and a pre-tested estimator, given by β̂t(â) whenever the

test accepts unconfoundedness and τ̂t when it rejects it. Trimming is also applied to p̂(·).

In Tables C.2 and C.3 in Appendix C we report, for each estimator, the raw bias, the standard

deviation of
√
n( ̂(L)ATT − (L)ATT ), the mean of the estimated standard deviation, and the mean

squared error of
√
n( ̂(L)ATT − (L)ATT ). We use a naive (but natural) estimator for the standard

error of the pre-tested estimator; namely, we take the estimated standard error of either β̂t(a) or τt,

depending on which one is used. In addition, we report the actual rejection rates and the average

weight across Monte Carlo cycles that the combined estimator assigns to τ̂t (the mean of â).

Again, several aspects of the results are worth discussing.

First, there is adequate, though not perfect, asymptotic size control in all cases where the

specification of the SLE is sufficiently flexible and there is no excessive trimming. The extent to

which the 5% trimming can distort the size of the test in the Lin. 2 case is rather alarming; in the

very least, this suggests that trimming should be gradually eliminated as the sample size increases.

Second, in almost all cases, the combined estimator has smaller standard errors in small samples

than the HIR estimator β̂t, and the drop is especially large when q̂ is overspecified. While this tends

to be accompanied by an uptick in absolute bias, in almost all cases the combined estimator has

the lowest finite sample MSE—the only exceptions come from the Linear 2 model with aggressive

trimming. As the DGP satisfies the conditions of Theorem 3, the combined estimator puts less and

less weight on τ̂t in larger samples and becomes equivalent to β̂t unless trimming interferes.
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Third, even though the pre-tested estimator has a higher MSE than β̂t or the combined esti-

mator, in almost all the cases this MSE is lower than that of τ̂t. (Again, the only exceptions come

in the Linear 2 case with 5% trimming for n = 2500, but here β̂t itself has a higher MSE than τ̂t.)

Thus, while there is a price to pay for testing the validity of the unconfoundedness assumption,

there is still a substantial gain relative to the case where one only has the IV estimator to fall back

on. Of course, one would be better off taking unconfoundedness at face value when it actually

holds. But as we will shortly see, there is a large cost in terms of bias if one happens to be wrong,

and the consistency of the unconfoundedness test helps avoid paying this cost.

Fourth, the naive method described above underestimates the true standard error of the pre-

tested estimator. We briefly examined a bootstrap estimator in a limited number of cases, and the

results (not reported) appear upward biased. We do not consider these results conclusive as we took

some shortcuts due to computational cost (to study this estimator one has to embed a bootstrap

cycle inside a Monte Carlo cycle). We further note that the distribution of the pre-tested estimator

can show severe departures from normality such as multimodality or extremely high kurtosis.

We now present cases where unconfoundedness does not hold conditional on X. Specifically,

we set b = 0.5 again; some additional results for b = 0.25 are available in an online supplement.

We focus only on those cases from the previous exercise where size was asymptotically controlled,

as power has questionable value otherwise. The results are displayed in Table C.4.

Our first point is that the test appears consistent against these departures from the null—

rejection rates approach unity as the sample size grows in all cases examined. Nevertheless, over-

specifying the series estimators can seriously erode power in small samples; see the cubic SLE in

Table C.4 for q=Lin. 1, Rat. 1, Rat. 2. In fact, in these cases the test is not unbiased. A further

odd consequence of overfitting is that power need not increase monotonically with n; see again the

cubic SLE in Table C.4 for q=Lin. 2.

Second, β̂t, and hence the combined estimator, is rather severely biased both in small samples

and asymptotically (the bias is of course a decreasing function of b). Therefore, even though β̂t

generally has a lower standard error than τ̂t, its MSE, in large enough samples, is substantially

larger than that of τ̂t. As the sample size grows, the pre-tested estimator behaves more and more

similarly to τ̂t, eventually also dominating β̂t and β̂t(â).

Third, in smaller samples the MSE of the pre-tested estimator is often larger than that of τt

as the pre-tested estimator uses β̂t(â) with positive probability, and β̂t(â) is usually inferior to τ̂t
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due to its bias inherited mostly from β̂t. However, there are cases in which the increased bias of

the combined estimator is more than offset by a reduction in variance so that MSE(β̂t(â)) is lower

than MSE(τ̂t) or MSE(β̂t) or both. This happens mainly when n = 250 and q̂ is overspecified; see

also the cubic SLE for q=Lin. 1, Lin. 2, Rat. 1, Rat. 2 in Table C.4. As in these cases power tends

to be (very) low, the pre-tested estimator preserves most of the MSE gain delivered by β̂t(â) or

might even improve on it slightly. This property of the combined estimator mitigates the cost of

the type 2 errors made by the test.

6 Evaluating the unconfoundedness test using real data

6.1 An illustrative empirical application

We apply our method to estimate the impact of JTPA training programs on subsequent earnings

and to test the unconfoundedness of the participation decision. We use the same data set as Abadie

et al. (2002), henceforth AAI, publicly available at

http://econ-www.mit.edu/faculty/angrist/data1/data/abangim02

As described by Bloom et al. (1997) and AAI, part of the JPTA program (the National JTPA

study) involved collecting data specifically for purposes of evaluation. In some of the service delivery

areas, between Nov. 1987 and Sept. 1989, randomly selected applicants were offered a job-related

service (classroom training, on-the-job training, job search assistance, etc.) or were denied services

and excluded from the program for 18 months (1 out of 3 on average).

Clearly, the random offer of services (Z) can be used, without further conditioning, as an

instrument for evaluating the effect of actual program participation (D) on earnings (Y ), measured

as the sum of earnings in the 30 month period following the offer. About 36 percent of those with

an offer chose not to participate; conversely, a small fraction of applicants, less than 0.5 percent,

ended up participating despite the fact that they were turned away. Hence, Z satisfies one-sided

non-compliance almost perfectly; the small number of observations violating this condition were

dropped from the sample. (AAI also ignore this small group in interpreting their results.) The

total number of observations is then 11,150; of these, 6,067 are female and 5,083 are male. We

treat the two genders separately throughout.

The full set of AAI covariates (X) include
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Table 6.1: Treatment effect estimates and unconfoundedness test results

Subpop. Obs. τ̂t std(τ̂t) β̂t std(β̂t) std(τ̂t − β̂t) Test-stat p-val. (2-sided)

X1 = X2 = ∅, q̂, p̂=const.

Males 5083 1716.0 (916.4) 4035.7 (557.3) (740.7) -3.132 0.002

Females 6067 1916.4 (547.8) 2146.7 (346.4) (436.1) -0.528 0.597

X1 = X2 =(BELOW30, MINORITY, HS), q̂, p̂=sample splitting; const. within subsample

Males 5083 1805.9 (904.5) 3936.0 (554.8) (731.8) -2.911 0.004

Females 6067 1813.7 (545.3) 1912.4 (347.2) (434.6) -0.227 0.820

X1 = X2 =(BELOW30, MINORITY, HS), q̂, p̂=linear

Males 5083 1751.2 (905.6) 3922.3 (555.0) (732.3) -2.965 0.003

Females 6067 1809.9 (544.9) 1910.2 (346.9) (434.0) -0.231 0.817

X1 = X2 =full set of AAI controls, q̂, p̂=linear

Males 5083 1666.7 (879.9) 3642.8 (546.2) (709.9) -2.784 0.005

Females 6067 1919.2 (522.3) 2108.2 (337.0) (417.1) -0.453 0.650

Note: τ̂t is the IPW IV estimator of (L)ATT. β̂t is the IPW estimator of ATT under unconfoundedness. All

estimates are in U.S. dollars (ca. 1990). Numbers in parentheses are standard errors.

“dummies for black and Hispanic applicants, a dummy for high-school graduates (in-

cluding GED holders), dummies for married applicants, 5 age-group dummies, and

dummies for AFDC receipt (for women) and whether the applicant worked at least

12 weeks in the 12 months preceding random assignment. Also included are dummies

for the original recommended service strategy [...] and a dummy for whether earnings

data are from the second follow-up survey.” (AAI, p. 101)

See Table 1 of AAI for descriptive statistics. To illustrate the “sample splitting” method described

in comment 6 after Theorem 1 we also construct a smaller set of controls with dummies for high-

school education, minority status (black or hispanic), and whether the applicant is below age 30.

In Table 6.1 we present four sets of estimation/test results. In the first exercise we do not use

any covariates in computing τ̂t and β̂t. The LATT estimator τ̂t is interpreted as follows. Take, e.g.,

the value 1916.4 for females. This means that female compliers who actually participated in the

program (i.e., were assigned Z = 1), are estimated to increase their 30-month earnings by $1916.4

on average. Since Z is randomly assigned, this number can also be interpreted as an estimate of

LATE, i.e. the average effect among all compliers. Further, by one-sided non-compliance, $1916.4 is

also an estimate of the female ATT. As the difference between τ̂t and β̂t = 2146.7 is not statistically
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significant, the hypothesis of completely random participation cannot be rejected for females. In

contrast, β̂t for males is more than twice as large as τ̂t, and the difference is highly significant. This

suggests that self-selection into the program among men is based partly on factors systematically

related to the potential outcomes.

In the next two exercises we set X1 and X2 equal to the restricted set of covariates. First

we split the male and female samples by the eight possible configurations of the three indicators

and estimate the instrument propensity score by the subsample averages of Z; then we restrict the

functional form to logit with a linear index. The two sets of results are similar both to each other

and the results from the previous exercise. In particular, random participation is not rejected for

females while it is still strongly rejected for males. There are factors related to the male participation

decision as well as the potential outcomes that are not captured by the set of covariates used.

Finally, in the fourth exercise we use the full set of AAI covariates in a linear logit model.

Compared with the no-covariate case, the estimated standard errors are slightly lower across the

board, but the change in the point estimates are still within a small fraction of them. Once again,

the test does not reject uncounfoundedness for females but it does for males.

Since the hypothesis of random treatment participation cannot be rejected for females, β̂t can

also be interpreted as an estimate of ATE. In contrast, β̂t is likely to be substantially biased as an

estimate of male ATE. Furthermore, based on Section 4, one can take a weighted average of τ̂t and

β̂t to obtain a more efficient estimate of female ATE/ATT. As â ≈ 0 in all cases, the combined

estimator is virtually the same as β̂t and is not reported. Nevertheless, without testing for (and

failing to reject) the unconfoundedness assumption, the only valid estimate of female ATT is τ̂t,

which has a much larger standard error than β̂t.

While the result on male vs. female self-selection is robust in this limited set of exercises,

one would need to study the program design in more detail before jumping to conclusions about,

say, behavioral differences. Understanding how the explicitly observed violations of one-sided non-

compliance came about would be especially pertinent, and, as pointed out by a referee, the broader

issue of control group substitution documented by Heckman et al. (2000) would also have to be

taken into account. Furthermore, there are potentially relevant covariates (e.g., indicators of the

service delivery area) not available in the AAI version of the data set. In short, the empirical results

are best treated as illustrative or as a starting point for a more careful investigation.
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6.2 An empirical Monte Carlo exercise

We supplement our illustrative application with an empirical Monte Carlo exercise. The basic

idea, as described by Huber et al. (2013), is to build a data generating process in which the

number of variables, their distributions, and the relationships between them are based on empirical

quantities from a relevant data set (the AAI version of the JTPA data in our case). Of course,

in evaluating our test procedure we need to control whether or not the null hypothesis holds,

which makes it necessary to introduce some artificial variables and parameters. We focus the

exercise on a question left unexplored in our “synthetic” Monte Carlo study; namely, the potential

distortions introduced by violations of the one-sided non-compliance assumption. The simulations

also provide additional evidence on the size and power properties of the test in a presumably more

realistic setting. Similarly to the application, we condition on gender throughout, i.e., treat males

and females as separate populations.

Mimicking the experimental setup in the National JTPA study, the instrument Z is a random

draw from a Bernoulli(2/3) distribution. Let θ̂ denote the coefficient vector from a logit regression

of the observed treatment indicator on a constant and the full set X of the AAI covariates. The

potential treatment status indicator D(1) is generated according to

D(1) = 1(Λ(X ′θ̂ + bν) > U),

where Λ(·) is the logistic cdf, U ∼ uniform[0,1], ν ∼ N(0, 1), independent of each other, X and Z.

The parameter b ≥ 0 governs how strong a role the unobserved variable ν plays in the selection

process; D(0) and the potential outcomes will be specified in a way so that unconfoundedness holds

if and only if b = 0, i.e., ν is the only unobserved confounder. We define D(0) in two different ways:

(i) D(0) = D(1) · 1(Φ(ν) < c) and (ii) D(0) = D(1) · 1(S < c),

where Φ(·) is the standard normal cdf, S is uniform[0, 1], independent of all other variables defined

thus far, and c ∈ [0, 1] is a parameter that we calibrate to set π ≡ P [D(0) = 1] equal to various

pre-specified values. (E.g., for c = 0, π = 0 for both specifications.) The multiplicative structure

of D(0) ensures that monotonicity is satisfied, i.e., there are no defiers in the population. In

specification (i) the violation of one-sided non-compliance is due to the confounding variable ν; in

case (ii) a completely exogenous variable. Actual treatment status is D = D(Z).

The potential outcome Y (1) is drawn randomly from the empirical distribution of earnings
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(regardless of treatment status in the data), and Y (0) is specified as

Y (0) = Y (1)− 0.2σ̂(α+X ′θ̂ + ν + ε),

where ε ∼ N(0, 1) is an independently generated error, σ̂ is the standard deviation of earnings in

the data, and α = −0.47 for males and −0.06 for females. The potential outcome equations were

calibrated so that for b = 1 and π = 0, ATT = LATT ≈ 1667 in the male population, and for

b = 0 and π = 0, ATT = LATT ≈ 1920 in the female population. These settings match the value

of τ̂t in the last panel of Table 6.1 as well as the conclusion of the test in the two populations. The

actually observed outcome is of course Y = Y (D).

In each Monte Carlo cycle we draw a sample of size nM for males and nF for females. We perform

the unconfoundedness test at the 5% nominal significance level, using the specifications given in

the bottom panel of Table 6.1. The chosen sample sizes are nF = 500; 5000 and nM = 600; 6000

(the larger figure for either gender matches the application). We report rejection rates for various

values of the parameters b and π = P [D(0) = 1]. For females, we restrict attention to the size of the

test (b = 0), while for males we study size as well as power (b = 0, 0.5, 0.75, 1, 1.25). We calibrate c

to give π = 0, 0.03, 0.06 and 0.12, where π = 0 implies that one-sided non-compliance is satisfied.

When π > 0, we perform the test in two different ways: first we keep individuals that apparently

violate one-sided non-compliance (’keep’) and then we drop them from the sample (’drop’); the

expected proportion of such observations is π/3. The number of Monte Carlo repetitions is 2500

for the smaller values of nM and nF , and 1000 for the larger.

The simulation results are presented in Table 6.2. Under specification (i), violation of one-sided

non-compliance causes ATT 6= LATT . Theory predicts that in this case our test statistic explodes,

even for b = 0, as n → ∞. Viewed as a test of the unconfoundedness assumption, this amounts

to potentially severe size distortion, while the effect on finite sample power is generally ambiguous

(the bias in β̂t when b 6= 0 might partially offset the difference between ATT and LATT or add to

it).

As shown by panel (i) in Table 6.2, there is little evidence of size distortion for nM = 500 and

nF = 600, even when π = 0.12. However, power is also quite poor, likely due to the fact that the

number of covariates used in estimating the propensity score is fairly large relative to the sample

size (dim(X) = 13 for males and 14 for females). This observation accords well with the earlier

finding in the traditional Monte Carlo exercise that overspecifying the propensity score estimator

can lead to severe reduction in power. For nM = 5000 and nF = 6000, size distortion becomes quite
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Table 6.2: Empirical Monte Carlo: rejection rates of the unconfoundedness test at the 5%

nominal significance level

nM = 500, nF = 600 nM = 5000, nF = 6000

D(0) specification (i): Males

π = 0 π = 0.03 π = 0.06 π = 0.12 π = 0 π = 0.03 π = 0.06 π = 0.12

b keep drop keep drop keep drop keep drop keep drop keep drop

1.25 0.157 0.164 0.178 0.162 0.183 0.180 0.213 0.889 0.884 0.911 0.890 0.925 0.883 0.951

1 0.129 0.135 0.137 0.134 0.152 0.152 0.173 0.748 0.795 0.824 0.790 0.856 0.804 0.904

0.75 0.109 0.098 0.106 0.124 0.140 0.126 0.154 0.580 0.659 0.682 0.690 0.743 0.692 0.801

0.5 0.081 0.089 0.092 0.098 0.101 0.097 0.105 0.341 0.402 0.421 0.456 0.503 0.529 0.635

0 0.050 0.052 0.052 0.052 0.054 0.062 0.065 0.047 0.051 0.048 0.088 0.097 0.141 0.149

D(0) specification (i): Females

0 0.051 0.047 0.048 0.051 0.056 0.061 0.061 0.048 0.061 0.066 0.095 0.098 0.150 0.176

D(0) specification (ii): Males

1.25 0.157 0.146 0.154 0.138 0.148 0.118 0.134 0.889 0.830 0.852 0.798 0.838 0.688 0.754

1 0.129 0.114 0.115 0.102 0.112 0.112 0.119 0.748 0.704 0.741 0.672 0.723 0.540 0.635

0.75 0.109 0.101 0.104 0.101 0.106 0.079 0.091 0.580 0.532 0.557 0.473 0.536 0.411 0.496

0.5 0.081 0.079 0.084 0.081 0.077 0.068 0.079 0.341 0.286 0.315 0.287 0.313 0.219 0.263

0 0.050 0.056 0.061 0.049 0.054 0.049 0.052 0.047 0.043 0.043 0.045 0.049 0.045 0.053

D(0) specification (ii): Females

0 0.051 0.053 0.056 0.049 0.052 0.053 0.052 0.048 0.057 0.049 0.037 0.040 0.045 0.043

Note: For π = 0 one-sided non-compliance is satisfied and specifications (i) and (ii) coincide.

significant. For π = 0.06, actual size is roughly double the nominal size for either gender, while for

π = 0.12 it is triple. At the same time, power also increases significantly, and it is interesting to

note that even after adjusting for the size distortion, power tends to be larger for π > 0 than for

π = 0, at least for smaller positive values of b and the ’drop’ option.

Specification (ii) for D(0) represents a polar case in which one-sided non-compliance is violated,

but the significance level of the test is unaffected, because ATT = LATT . This is a consequence of

the fact that Z is completely randomly assigned, and D(0) is completely randomly assigned when

D(1) = 1. It is straightforward to show that in this case the common value of the two parameters

is given by E[Y (1)−Y (0) | D(1) = 1]. Indeed, as shown by panel (ii) of Table 6.2, the nominal 5%
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size remains valid even for nM = 5000 and nF = 6000. There is however evidence that violation

of one-sided non-compliance reduces power, suggesting that the bias of β̂t is a (slightly) decreasing

function of π for a given b > 0. Also, the ’drop’ option seems to result in a small upward shift in

the entire finite sample power curve.

Generally speaking, the results suggest that the rejection of the unconfoundedness assumption

for males in the empirical exercise is unlikely to be a product of potential size distortions caused

by the apparently mild violation of one-sided non-compliance (in the application P [D(0) = 1] ≈

3× 0.005 = 0.015).

On the other hand, the non-rejection for females could reflect lack of power against moderate

violations of unconfoundedness. In the setup considered above the unobserved confounder ν must

play a significant role in the selection process for unconfoundedness to be rejected with reasonably

high probability. E.g., for males V ar(bν)/V ar(X ′θ̂) ≈ 1.5 for b = 0.5, and still power is only about

34% for π = 0 and nM = 5000.

7 Conclusion

Given a (conditionally) valid binary instrument, nonparametric estimators of LATE and LATT can

be based on imputation or matching, as in Frölich (2007), or weighting by the estimated instrument

propensity score, as proposed in this paper. The two approaches are shown to be asymptotically

equivalent; in particular, both types of estimators are
√
n-consistent and efficient.

When the available binary instrument satisfies one-sided non-compliance, the proposed estima-

tor of LATT is compared with the ATT estimator of HIR to test the assumption that treatment

assignment is unconfounded given a vector of observed covariates. To our knowledge, this is the

first such test in the literature. Acceptance of uncofoundedness allows one to estimate ATE and im-

prove on the asymptotic variance of the IV-based (L)ATT estimator. Simulations show that there

are finite sample MSE gains even after the pre-testing effect is taken into account. An illustrative

application of the test using JTPA data rejects unconfoundedness for males but not for females.
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Frölich, M. and B. Melly (2013a). Identification of Treatment Effects on the Treated with One-

Sided Non-Compliance. Econometric Reviews 32, 384–414.
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Appendix: Proofs and Tables

A. The proof of Theorem 1

We only show the proof for τ̂ . The treatment of τ̂t is similar and is available in the online supplement. In

order to simplify notation, we set X1 = X. Let

∆̂ =
1

n

n∑
i=1

{
ZiYi
q̂(Xi)

− (1− Zi)Yi
1− q̂(Xi)

}
, Γ̂ =

1

n

n∑
i=1

{
ZiDi

q̂(Xi)
− (1− Zi)Di

1− q̂(Xi)

}
.

so that τ̂ = ∆̂/Γ̂. The asymptotic properties of ∆̂ and Γ̂ are established in the following lemma.

Lemma 3 Under the conditions of Theorem 1,
√
n(∆̂−∆) = 1√

n

∑n
i=1 δ(Yi, Di, Zi, Xi)+op(1) and

√
n(Γ̂−

Γ) = 1√
n

∑n
i=1 γ(Yi, Di, Zi, Xi) + op(1), where

δ(Yi, Di, Zi, Xi) =
ZiYi
q(Xi)

− (1− Zi)Yi
1− q(Xi)

−∆−
(
m1(Xi)

q(Xi)
+

m0(Xi)

1− q(Xi)

)
(Zi − q(Xi))

γ(Yi, Di, Zi, Xi) =
ZiDi

q(Xi)
− (1− Zi)Di

1− q(Xi)
− Γ−

(
µ1(Xi)

q(Xi)
+

µ0(Xi)

1− q(Xi)

)
(Zi − q(Xi)).

To make use of Lemma 3 we take a first order Taylor expansion of ∆̂/Γ̂ around the point (∆,Γ), yielding

√
n(τ̂ − τ) =

√
n

(
∆̂

Γ̂
− ∆

Γ

)
=

1

Γ

√
n(∆̂−∆)− τ

Γ

√
n(Γ̂− Γ) + op(1). (13)

Applying Lemma 3 to (13) gives (8). Under Assumption 1(i), we have E[ψ(Y,D,Z,X)] = 0 and E[ψ2(Y,D,Z,X)] <

∞. Applying the Lindeberg-Levy CLT to (8) shows
√
n(τ̂ − τ)

d→ N (0,V).

The proof of Lemma 3 Recall the definition of W (z). By Assumption 1(ii), it is true that E[W (z)|Z,X] =

E[W (z)|X], z = 0, 1. That is, if we treat Z as the treatment assignment and W (z) as the potential outcomes,

W (z) and Z are unconfounded given X. Also, it is straightforward to check that Assumptions 1-5 of Thm. 1

of HIR are satisfied. The result for ∆̂ follows directly from it. A similar argument applies to Γ̂.

B. The proof of Theorem 3

Put X = X1 = X2. Under the conditions of Theorem 3, including one-sided non-compliance, the following

hold:

p =P (D = 1) = P (Z = 1, D(1) = 1) = P (D(1) = 1|Z = 1)P (Z = 1) = ΓtE(Z)

p(x) =P (D = 1|X = x) = P (D(1) = 1|Z = 1, X = x)P (Z = 1|X = x) = µ1(x)q(x),

µ0(x) =E[D|Z = 0, X = x] = E[D(0)|X = x] = 0,

ρd(x) =E[Y |D = d,X = x] = E[Y (d)|X = x], d = 0, 1.
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Furthermore,

m1(x) =E[Y |Z = 1, X = x]

=E[Y |Z = 1, D = 1, X]P [D = 1|Z = 1, X = x]

+ E[Y |Z = 1, D = 0, X]P [D = 0|Z = 1, X = x]

=E[Y (1)|Z = 1, D = 1, X = x]P [D(1) = 1|Z = 1, X = x]

+ E[Y (0)|Z = 1, D = 0, X = x]P [D(1) = 0|Z = 1, X = x]

=E[Y (1)|X = x]µ1(x) + E[Y (0)|X = x](1− µ1(x))

=ρ1(x)− (1− µ1(x))(ρ1(x)− ρ0(x)),

where the fourth equality holds because the IV assumption and the unconfoundedness assumption hold

jointly as in (12). Also,

m0(x) =E[Y |Z = 0, X = x] = E[Y |Z = 0, D = 0, X = x]

=E[Y (0)|Z = 0, D = 0, X = x] = E[Y (0)|X = x] = ρ0(x),

where the second equality holds since D = 0 when Z = 0. Define

φt(Y,D,X) =
p(X)

p

{
D(Y − ρ1(X))

p(X)
− (1−D)(Y − ρ0(X))

(1− p(X))
+
D(ρ1(X)− ρ0(X)− βt)

p(X)

}

≡ p(X)

p
{φ1 − φ2 + φ3} ,

and rewrite ψt(Y,D,Z,X) as

ψt(Y,D,Z,X)

=
q(X)

E(Z)Γt

{
Z
[
Y −m1(X)− τt(D − µ1(X))

]
q(X)

−
(1− Z)

[
Y −m0(X)− τt(D − µ0(X))

]
1− q(X)

+
Z
[
m1(X)−m0(X)− τt(µ1(X)− µ0(X))

]
q(X)

}
,

=
p(X)

p

1

µ1(X)

{
Z(Y − ρ1(X))

q(X)
+
Z(1− µ1(X))(ρ1(X)− ρ0(X))

q(X)
− Zτt(D − µ1(X))

q(X)

− (1− Z)(Y − ρ0(X))

1− q(X)
+
Z(ρ1(X)− ρ0(X)− βt)µ1(X)

q(X)

}

=
p(X)

p

{
Z(Y − ρ1(X))

p(X)
+
Z(1− µ1(X))(ρ1(X)− ρ0(X))

p(X)
− Zβt((D − 1) + (1− µ1(X)))

p(X)

− (1− Z)(Y − ρ0(X))

(1− q(X))µ1(X)
+
Z(ρ1(X)− ρ0(X)− βt)µ1(X)

p(X)

}

=
p(X)

p

{
Z(Y − ρ1(X))

p(X)
− (1− Z)(Y − ρ0(X))

(1− q(X))µ1(X)
+
Z(ρ1(X)− ρ0(X)− βt)

p(X)
− Zβt(D − 1))

p(X)

}

≡p(X)

p
{ψ1 − ψ2 + ψ3 − ψ4} .
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Note that

E[φ1ψ1|X] =
E
[
ZD(Y − ρ1(X))2

∣∣X]
p2(X)

=
E
[
D(Y − ρ1(X))2

∣∣X]
p2(X)

=
E
[
D(Y − ρ1(X))2

∣∣X,D = 1
]
p(D = 1|X = x)

p2(X)
=
σ2
1(X)

p(X)
,

where σ2
1(X) = V (Y (1)|X). Also, E[φ1ψ2] = 0 since (1− Z)D = 0 with probability one and E[φ1ψ4|X] = 0

since D(1−D) = 0. Note that

E[φ1ψ3|X] =
ρ1(X)− ρ0(X)− βt

p2(X)
E[DZ(Y − ρ1(X))|X]

=
ρ1(X)− ρ0(X)− βt

p2(X)
E[D(Y (1)− ρ1(X))|X] = 0,

where the first equality in second line holds since ZD = 1 with probability one and the second equality holds

since E[D(Y (1)− ρ1(X))|X] = 0. Furthermore,

E[φ1ψ1|X] =
E[Z(1−D)(Y − ρ1(X))(Y − ρ0(X))|X]

p(X)(1− p(X))

=
E[Z(1−D)(Y − ρ1(X))(Y − ρ0(X))|X,Z = 1, D = 0]P (Z = 1, D = 0|X)

p(X)(1− p(X))

=
E[(Y (0)− ρ1(X))(Y (0)− ρ0(X))|X,Z = 1, D = 0](1− µ1(X))q(X)

p(X)(1− p(X))

=
σ2
0(X)(1− µ1(X))q(X)

p(X)(1− p(X))
=

σ2
0(X)

1− p(X)

1− µ1(X)

µ1(X)
,

E[φ1ψ2|X] =
E[(1− Z)(1−D)(Y − ρ0(X))2|X]

(1− p(X))(1− q(X))µ1(X)

=
E[(1− Z)(1−D)(Y − ρ0(X))2|X,Z = 0, D = 0]P (Z = 0, D = 0|X)

(1− p(X))(1− q(X))µ1(X)

=
E[(Y (0)− ρ0(X))2|X,D = 0]P (Z = 0|X)

(1− p(X))(1− q(X))µ1(X)

=
σ2
0(X)(1− q(X))

(1− p(X))(1− q(X))µ1(X)
=

σ2
0(X)

1− p(X)

1

µ1(X)
.

Also, we have E[φ2ψ3] = 0, E[φ2ψ4] = 0, E[φ3ψ1] = 0, E[φ3ψ2] = 0 and E[φ3ψ4] = 0. Finally,

E[φ3ψ3] =
E[D(ρ1(X)− ρ0(X)− βt)2|X]

p2(X)
=

(ρ1(X)− ρ0(X)− βt)2

p(X)
.

Consequently,

Cov(φt, ψt) =E[φtψt]

=E

[
p2(X)

p

{σ2
1(X)

p(X)
− σ2

0(X)

1− p(X)

1− µ1(X)

µ1(X)
+

σ2
0(X)

1− p(X)

1

µ1(X)
+

(ρ1(X)− ρ0(X)− βt)2

p(X)

}]
=E[φ2t ] = V ar(φt).

This shows Theorem 3.

C. Monte Carlo Tables
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Table C.2: Properties of the unconfoundedness test and the distribution of
√
n[ ̂(L)ATT −

(L)ATT ] for various estimators: b = 0 (unconfoundedness holds)

n = 250 n = 500 n = 2500

q Series (q̂) Trim. Estimator Mean√
n

s.e. E(ŝ.e.) MSE Mean√
n

s.e. E(ŝ.e.) MSE Mean√
n

s.e. E(ŝ.e.) MSE

Const. lin. .5% τ̂t (LATT) -0.00 2.64 2.54 6.96 0.00 2.47 2.47 6.11 -0.00 2.42 2.42 5.88
β̂t (ATT) -0.02 1.63 1.46 2.73 -0.01 1.56 1.44 2.51 -0.01 1.54 1.44 2.91
Combined -0.01 1.62 1.45 2.66 -0.01 1.56 1.44 2.49 -0.01 1.53 1.44 2.89
Pre-tested -0.01 1.99 1.52 3.97 -0.01 1.88 1.50 3.55 -0.01 1.92 1.51 3.96
Size/E(â) 0.061/0.02 0.057/0.01 0.070/0.01

Const. quad. .5% τ̂t (LATT) 0.01 3.75 5.04 14.07 0.00 2.76 2.78 7.63 0.00 2.48 2.45 6.15
β̂t (ATT) 0.01 2.04 1.88 4.17 -0.00 1.61 1.50 2.60 0.00 1.46 1.44 2.12
Combined 0.02 1.93 1.67 3.77 -0.00 1.59 1.49 2.54 0.00 1.46 1.44 2.12
Pre-tested 0.03 2.34 1.74 5.63 0.00 1.94 1.54 3.78 -0.00 1.79 1.49 3.22
Size/E(â) 0.045/0.07 0.046/0.03 0.048/0.01

Lin. 1 lin. .5% τ̂t (LATT) 0.00 4.42 3.04 19.52 0.00 4.11 2.78 16.86 0.00 3.91 2.63 15.30
β̂t (ATT) -0.01 1.87 1.53 3.50 -0.01 1.78 1.51 3.18 -0.01 1.71 1.51 3.01
Combined 0.01 1.84 1.51 3.40 0.00 1.77 1.51 3.14 -0.00 1.71 1.51 2.97
Pre-tested 0.02 3.24 1.75 10.63 0.00 3.43 1.77 11.76 0.00 3.36 1.76 11.28
Size/E(â) 0.157/0.03 0.192/0.02 0.220/0.01

Lin. 1 quad. .5% τ̂t (LATT) 0.02 6.70 9.62 45.03 0.01 4.27 4.24 18.30 0.00 3.02 2.73 9.14
β̂t (ATT) 0.01 2.52 2.19 6.36 0.00 1.86 1.59 3.49 0.00 1.54 1.50 2.38
Combined 0.03 2.29 1.80 5.45 0.01 1.83 1.56 3.37 0.00 1.54 1.50 2.38
Pre-tested 0.07 3.48 1.98 13.3 0.02 2.67 1.68 7.43 0.00 2.23 1.61 4.98
Size/E(â) 0.092/0.06 0.085/0.03 0.079/0.01

Lin. 1 cube .5% τ̂t (LATT) 0.21 18.04 112.42 336.26 0.04 10.41 40.22 109.01 0.00 3.49 3.66 12.19
β̂t (ATT) 0.08 11.88 48.16 142.77 0.03 3.76 5.99 14.44 0.00 1.65 1.56 2.83
Combined 0.29 5.98 8.04 57.09 0.06 3.02 2.82 11.05 0.00 1.67 1.55 2.81
Pre-tested 0.36 7.42 8.26 87.20 0.09 4.14 2.97 21.37 0.01 2.26 1.64 5.21
Size/E(â) 0.081/0.18 0.072/0.11 0.061/0.02

Lin. 2 lin. .5% τ̂t (LATT) 0.00 4.46 3.81 19.87 0.00 4.09 3.68 16.69 0.00 3.87 3.60 14.96
β̂t (ATT) -0.00 2.78 2.47 7.72 -0.00 2.64 2.49 6.99 -0.00 2.57 2.50 6.59
Combined 0.00 2.72 2.46 7.43 0.00 2.63 2.49 6.90 -0.00 2.56 2.50 6.58
Pre-tested 0.00 3.39 2.57 11.52 0.00 3.18 2.57 10.13 -0.00 3.11 2.58 9.68
Size/E(â) 0.063/0.01 0.064/0.01 0.072/0.00

Lin. 2 quad. .5% τ̂t (LATT) 0.01 6.49 4.84 42.18 0.01 4.47 3.87 20.03 0.00 3.81 3.63 14.53
β̂t (ATT) 0.01 12.10 4.96 146.54 0.01 2.89 2.53 8.39 0.00 2.55 2.50 6.49
Combined 0.05 3.97 2.70 16.41 0.01 2.82 2.51 8.03 0.00 2.55 2.50 6.50
Pre-tested 0.04 4.76 2.92 23.13 0.01 3.48 2.63 12.16 0.00 3.01 2.58 9.06
Size/E(â) 0.120/0.10 0.080/0.02 0.067/0.01

Lin. 2 cube .5% τ̂t (LATT) 0.22 81.70 293.30 6686.90 0.06 10.35 10.98 109.14 0.00 4.07 3.83 16.60
β̂t (ATT) 2.24 38.69 85.22 2753.10 0.10 22.82 25.39 526.13 0.00 2.64 2.54 6.98
Combined 1.81 11.34 6.42 948.94 0.18 5.68 3.23 48.71 0.00 2.62 2.54 6.92
Pre-tested 1.65 25.13 9.06 1314.86 0.15 6.20 3.54 50.36 0.00 3.14 2.62 9.89
Size/E(â) 0.606/0.27 0.163/0.18 0.070/0.01
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Table C.3: Properties of the unconfoundedness test and the distribution of
√
n[ ̂(L)ATT −

(L)ATT ] for various estimators: b = 0 (unconfoundedness holds)

n = 250 n = 500 n = 2500

q Series (q̂) Trim. Estimator Mean√
n

s.e. E(ŝ.e.) MSE Mean√
n

s.e. E(ŝ.e.) MSE Mean√
n

s.e. E(ŝ.e.) MSE

Lin. 2 lin. 5% τ̂t (LATT) -0.08 5.05 3.85 27.04 -0.04 4.50 3.69 20.96 -0.02 4.07 3.60 17.14
β̂t (ATT) 0.11 1.97 2.06 6.89 0.11 1.93 2.14 9.32 0.10 1.90 2.20 29.00
Combined 0.11 2.00 2.05 7.26 0.11 1.92 2.13 10.10 0.11 1.89 2.19 33.40
Pre-tested 0.01 4.69 2.46 22.04 0.03 4.49 2.55 20.48 0.01 5.16 3.01 26.92
Size/E(â) 0.192/-0.06 0.243/-0.07 0.570/-0.07

Lin. 2 quad. 5% τ̂t (LATT) -0.29 7.34 4.95 75.41 -0.13 5.20 3.92 35.16 -0.03 4.07 3.63 18.45
β̂t (ATT) 0.12 3.86 2.35 18.51 0.11 2.18 2.06 11.10 0.10 1.89 2.17 30.25
Combined 0.12 3.44 2.05 15.67 0.12 2.17 2.04 12.24 0.11 1.87 2.16 35.41
Pre-tested -0.16 7.16 3.20 57.43 -0.06 5.80 2.89 35.15 -0.00 5.19 3.12 26.96
Size/E(â) 0.386/0.01 0.420/-0.03 0.645/-0.08

Lin. 2 cube 5% τ̂t (LATT) -0.05 25.12 27.45 631.63 -0.33 9.28 8.40 141.13 -0.07 4.47 3.72 31.01
β̂t (ATT) 1.59 6.82 3.35 679.48 0.19 5.39 3.90 47.83 0.11 2.04 2.15 34.34
Combined 1.44 6.31 2.60 561.64 0.18 5.51 2.48 46.02 0.12 2.07 2.12 41.36
Pre-tested 0.71 19.71 6.45 513.24 -0.17 8.63 4.15 89.43 -0.05 5.44 3.44 36.43
Size/E(â) 0.624/0.08 0.545/0.09 0.818/-0.07

Rat. 1 lin. .5% τ̂t (LATT) -0.17 4.20 3.25 24.89 -0.17 4.00 3.03 30.84 -0.17 3.76 2.89 88.39
β̂t (ATT) -0.02 1.86 1.54 3.58 -0.02 1.78 1.53 3.41 -0.02 1.73 1.53 4.39
Combined -0.01 1.85 1.53 3.46 -0.01 1.77 1.52 3.22 -0.01 1.74 1.52 3.49
Pre-tested -0.07 3.43 1.84 13.12 -0.11 4.15 2.08 23.59 -0.16 4.41 2.69 85.78
Size/E(â) 0.151/-0.02 0.305/-0.04 0.833/-0.06

Rat. 1 quad. .5% τ̂t (LATT) 0.01 4.37 4.84 19.13 -0.01 3.21 2.96 10.29 -0.01 2.63 2.51 7.26
β̂t (ATT) 0.01 2.26 1.91 5.14 -0.00 1.74 1.52 3.04 -0.00 1.51 1.46 2.28
Combined 0.02 2.08 1.69 4.43 0.00 1.71 1.51 2.94 -0.00 1.51 1.46 2.29
Pre-tested 0.04 2.77 1.80 8.07 0.00 2.32 1.61 5.39 -0.01 1.99 1.52 4.04
Size/E(â) 0.071/0.07 0.073/0.03 0.064/0.01

Rat. 1 cube .5% τ̂t (LATT) 0.15 16.11 91.49 265.28 0.02 8.42 27.82 71.21 -0.00 2.86 2.79 8.22
β̂t (ATT) 0.08 11.06 43.62 124.18 0.02 3.28 4.50 11.02 -0.00 1.60 1.51 2.56
Combined 0.27 5.58 6.57 49.64 0.05 2.74 2.57 8.92 -0.00 1.58 1.50 2.52
Pre-tested 0.31 6.39 6.72 65.22 0.07 3.37 2.66 13.77 -0.00 2.03 1.57 4.11
Size/E(â) 0.058/0.19 0.052/0.12 0.060/0.02

Rat. 2 lin. .5% τ̂t (LATT) -0.01 2.56 2.49 6.60 -0.02 2.50 2.45 6.36 -0.01 2.46 2.43 6.52
β̂t (ATT) -0.01 1.67 1.52 2.84 -0.02 1.59 1.51 2.65 -0.01 1.54 1.51 2.79
Combined -0.02 1.66 1.51 2.82 -0.02 1.59 1.51 2.65 -0.01 1.54 1.51 2.80
Pre-tested -0.01 1.93 1.57 3.78 -0.02 1.91 1.56 3.77 -0.01 1.87 1.56 3.94
Size/E(â) 0.053/0.03 0.053/0.02 0.054/0.02

Rat. 2 quad. .5% τ̂t (LATT) 0.00 3.37 4.14 11.36 -0.00 2.72 2.68 7.43 -0.00 2.47 2.49 6.13
β̂t (ATT) 0.01 1.94 1.79 3.78 0.00 1.67 1.56 2.78 -0.00 1.55 1.52 2.42
Combined 0.01 1.88 1.68 3.57 0.00 1.66 1.55 2.77 -0.00 1.55 1.52 2.42
Pre-tested 0.02 2.23 1.74 5.03 0.00 1.98 1.61 3.90 -0.00 1.85 1.57 3.44
Size/E(â) 0.048/0.06 0.048/0.03 0.049/0.01

Rat. 2 cube .5% τ̂t (LATT) 0.09 10.41 59.04 110.67 0.01 4.67 13.00 21.94 -0.00 2.63 2.55 6.95
β̂t (ATT) 0.08 6.54 21.97 44.38 0.01 2.57 3.69 6.68 -0.00 1.61 1.54 2.64
Combined 0.19 3.98 4.60 24.99 0.03 2.27 2.22 5.61 -0.00 1.61 1.54 2.64
Pre-tested 0.21 4.43 4.66 30.77 0.04 2.59 2.27 7.44 -0.00 1.98 1.60 3.94
Size/E(â) 0.037/0.19 0.036/0.12 0.054/0.01
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Table C.4: Properties of the unconfoundedness test and the distribution of
√
n[ ̂(L)ATT −

(L)ATT ] for various estimators: b = 0.5 (unconfoundedness does not hold)
n = 250 n = 500 n = 2500

q Series (q̂) Trim. Estimator Mean√
n

s.e. E(ŝ.e.) MSE Mean√
n

s.e. E(ŝ.e.) MSE Mean√
n

s.e. E(ŝ.e.) MSE

Const. lin. .5% τ̂t (LATT) -0.01 2.63 2.57 6.91 -0.00 2.51 2.50 6.31 0.00 2.47 2.46 6.11
β̂t (ATT) 0.26 2.16 1.64 21.40 0.26 2.03 1.60 37.45 0.26 1.95 1.58 173.48
Combined 0.24 2.21 1.61 19.81 0.24 2.14 1.59 34.19 0.25 2.07 1.58 156.90
Pre-tested 0.05 3.21 2.15 11.06 0.02 3.03 2.33 9.37 0.00 2.47 2.46 6.11
Power/E(â) 0.509/0.09 0.785/0.07 1.000/0.05

Const. quad. .5% τ̂t (LATT) 0.00 3.84 5.04 14.72 -0.00 2.82 2.81 7.97 -0.00 2.48 2.48 6.16
β̂t (ATT) 0.35 2.36 2.16 36.66 0.35 1.78 1.61 63.93 0.35 1.53 1.51 300.43
Combined 0.33 2.50 1.82 33.78 -0.33 1.97 1.58 59.68 0.34 1.60 1.51 296.95
Pre-tested 0.18 4.05 2.38 24.13 0.01 3.26 2.68 10.70 -0.00 2.48 2.48 6.16
Power/E(â) 0.344/0.10 0.912/0.05 1.000/0.01

Lin. 1 quad. .5% τ̂t (LATT) 0.03 6.11 8.58 37.56 0.01 4.24 4.26 17.98 0.00 3.06 2.78 9.38
β̂t (ATT) 0.35 2.99 2.65 39.62 0.34 2.14 1.72 62.37 0.34 1.63 1.50 288.81
Combined 0.35 2.78 1.97 38.45 0.33 2.28 1.63 60.77 0.34 1.73 1.49 298.08
Pre-tested 0.28 4.01 2.31 35.11 0.10 4.85 2.74 28.54 0.00 3.06 2.78 9.38
Power/E(â) 0.160/0.09 0.606/0.04 1.000/0.00

Lin. 1 cube .5% τ̂t (LATT) 0.21 18.31 113.72 346.58 0.05 9.03 28.56 82.81 0.00 3.44 3.56 11.82
β̂t (ATT) 0.43 13.68 58.98 233.97 0.36 5.10 11.21 90.10 0.34 1.79 1.65 292.16
Combined 0.61 7.23 9.19 146.40 0.36 4.08 3.45 81.85 0.33 2.52 1.60 286.83
Pre-tested 0.62 7.45 9.23 152.31 0.33 4.69 3.64 77.97 0.01 3.88 3.35 15.15
Power/E(â) 0.017/0.22 0.068/0.14 0.986/0.02

Lin. 2. lin. .5% τ̂t (LATT) -0.02 4.59 3.95 21.13 -0.01 4.26 3.81 18.19 -0.00 3.94 3.72 15.53
β̂t (ATT) 0.25 2.94 2.47 24.35 0.25 2.66 2.48 38.71 0.25 2.55 2.49 164.11
Combined 0.25 2.88 2.46 24.22 0.25 2.66 2.47 39.21 0.25 2.56 2.48 167.73
Pre-tested 0.12 4.85 2.95 27.14 0.06 5.15 3.28 28.30 -0.00 3.96 3.72 15.71
Power/E(â) 0.258/0.01 0.539/-0.00 0.998/-0.01

Lin. 2 quad. .5% τ̂t (LATT) 0.01 6.27 4.84 39.38 -0.01 4.62 3.98 21.39 0.00 3.78 3.73 14.28
β̂t (ATT) 0.28 10.02 5.64 120.37 0.27 2.98 2.51 45.07 0.26 2.50 2.47 179.00
Combined 0.29 4.16 2.72 38.19 0.27 2.96 2.49 44.33 0.27 2.51 2.47 183.05
Pre-tested 0.14 5.61 3.29 36.38 0.06 5.38 3.37 30.90 0.00 3.80 3.73 14.44
Power/E(â) 0.270/0.12 0.536/0.02 0.998/0.01

Lin. 2 cube .5% τ̂t (LATT) 0.20 84.96 303.79 7227.8 0.06 9.08 9.61 84.10 -0.00 4.03 3.82 16.26
β̂t (ATT) 2.63 30.37 46.76 2656.1 0.37 19.90 18.49 464.75 0.27 2.69 2.50 183.19
Combined 2.06 11.08 5.77 1188.3 0.40 6.24 3.28 117.43 0.27 2.77 2.49 184.29
Pre-tested 1.66 25.07 8.71 1316.81 0.20 7.14 4.10 71.58 -0.00 4.05 3.81 16.43
Power/E(â) 0.677/0.27 0.379/0.24 0.998/-0.01

Rat. 1 quad. .5% τ̂t (LATT) -0.01 4.52 5.31 20.47 -0.02 3.24 2.99 10.68 -0.01 2.67 2.56 7.67
β̂t (ATT) 0.33 2.68 2.20 33.89 0.32 1.90 1.59 54.11 0.32 1.57 1.48 255.50
Combined 0.31 2.69 1.81 31.95 0.31 2.10 1.56 51.73 0.32 1.65 1.48 256.86
Pre-tested 0.17 4.26 2.36 25.37 0.01 3.89 2.74 15.14 -0.01 2.67 2.56 7.67
Power/E(â) 0.294/0.10 0.837/0.04 1.000/0.00

Rat. 1 cube .5% τ̂t (LATT) 0.16 15.24 81.02 238.97 0.03 6.60 15.72 43.93 -0.00 2.90 2.86 8.43
β̂t (ATT) 0.41 13.97 57.61 236.90 0.35 3.82 5.93 76.42 0.32 1.68 1.56 264.69
Combined 0.57 6.60 7.79 123.63 0.34 3.66 2.76 71.01 0.32 2.18 1.54 259.18
Pre-tested 0.57 6.76 7.84 126.31 0.27 4.62 3.12 59.14 -0.00 3.04 2.80 9.24
Power/E(â) 0.020/0.25 0.157/0.15 0.995/0.02

Rat. 2 lin. .5% τ̂t (LATT) -0.02 2.60 2.54 6.85 -0.02 2.57 2.50 6.74 -0.02 2.51 2.47 6.89
β̂t (ATT) 0.26 2.00 1.67 20.48 0.26 1.93 1.65 36.41 0.26 1.88 1.64 169.11
Combined 0.24 2.03 1.65 18.32 0.24 1.98 1.64 32.26 0.24 1.93 1.64 148.81
Pre-tested 0.04 3.21 2.20 10.66 -0.00 3.02 2.39 9.11 -0.02 2.51 2.47 6.89
Power/E(â) 0.571/0.08 0.854/0.07 1.000/0.06

Rat. 2 quad. .5% τ̂t (LATT) 0.00 3.36 3.88 11.27 -0.00 2.73 2.69 7.44 -0.00 2.58 2.53 6.70
β̂t (ATT) 0.34 2.20 2.04 33.16 0.33 1.82 1.68 58.57 0.33 1.68 1.62 272.24
Combined 0.31 2.31 1.81 29.82 0.32 1.91 1.66 53.72 0.32 1.72 1.62 260.59
Pre-tested 0.12 3.91 2.41 19.10 0.01 3.08 2.61 9.52 -0.00 2.58 2.53 6.70
Power/E(â) 0.462/0.10 0.936/0.06 1.000/0.02

Rat. 2 cube .5% τ̂t (LATT) 0.08 10.93 67.04 121.21 0.02 4.58 11.24 21.16 -0.00 2.64 2.61 7.02
β̂t (ATT) 0.40 9.12 32.80 123.83 0.35 2.90 4.34 70.17 0.33 1.69 1.66 273.89
Combined 0.48 4.74 5.69 79.06 0.32 3.37 2.47 62.33 0.32 1.84 1.65 255.62
Pre-tested 0.47 4.80 5.74 77.13 0.20 4.67 3.03 42.20 -0.00 2.65 2.61 7.06
Power/E(â) 0.020/0.24 0.326/0.17 0.999/0.03
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