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Abstract

A security’s expected return can be decomposed into its “carry” and its expected

price appreciation, where carry can be measured in advance without an asset pricing

model. We find that carry predicts returns both in the cross section and time

series for a variety of different asset classes that include global equities, global

bonds, currencies, commodities, US Treasuries, credit, and equity index options.

This predictability underlies the strong returns to “carry trades” that go long high-

carry and short low-carry securities, applied almost exclusively to currencies, but

shown here to be a robust feature of many assets. We decompose carry returns

into static and dynamic components and analyze the economic exposures. Despite

unconditionally low correlations across asset classes, we find times when carry

strategies across all asset classes do poorly, and show that these episodes coincide

with global recessions.
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We define an asset’s “carry” as its expected return assuming that its price does not change.

Based on this simple definition, any security’s return can be decomposed into its carry

and its expected and unexpected price appreciation:

return = carry + E(price appreciation)
︸ ︷︷ ︸

expected return

+unexpected price shock. (1)

Hence, an asset’s expected return is its carry plus its expected price appreciation. Carry

is directly observable ex ante and is model-free. Thus, carry represents a component of

expected returns we can measure in advance that is common to any asset pricing model

(whereas the part of the expected return coming from expected price appreciation must

be estimated from a model).

The concept of “carry” has been studied in the literature almost exclusively for

currencies, where it represents the interest rate differential between two countries. While

much theoretical and empirical research has focused exclusively on carry strategies in

currencies,1 equation (1) is a general relation that can be applied to any asset. Using this

broader concept of carry, we unify and extend the set of predictors of returns across a

variety of assets that include global equities, bonds, commodities, currencies, Treasuries,

credit, and index options.

Equation (1) shows that the link between carry and expected returns depends on

the relation between carry and expected price appreciation, where the latter could be

positive, zero, or negative. The uncovered interest rate parity in currencies, and the

expectations hypothesis more generally, predict that the expected price appreciation

offsets any variation in the carry so that the expected return is constant. In contrast,

carry predicts returns in many models with time-varying expected returns. Empirically,

we find that carry is a strong positive predictor of returns in each of the major asset

classes we study. Since carry varies over time and across assets, this result implies that

expected returns also vary through time and across assets and are predicted by carry,

rejecting the expectations hypothesis.

Carry provides a unified framework for understanding well-known predictors of returns

in these asset classes. For instance, we show how bond carry is closely related to the

slope of the yield curve studied in the bond literature, commodity carry is related to

the convenience yield, and equity carry is a forward-looking measure related to dividend

yields.2 These literatures have traditionally been treated independently, where various

1This literature goes back at least to Meese and Rogoff (1983). Surveys are presented by Froot and
Thaler (1990), Lewis (1995), and Engel (1996).

2See Cochrane (2011) and Ilmanen (2011) and references therein.

1



predictors in different asset classes are modeled as separate phenomena, and never (to

our knowledge) studied jointly. Our simple concept of carry unifies these measures and

allows us to investigate return predictability jointly across these asset classes. Moreover,

while carry is related to these known predictors, it is also different from these measures

and it can be applied more broadly. We find that the predictability of carry is often

stronger than that of these traditional predictors, indicating that carry not only provides

a unified conceptual framework for these predictors, but may also improve upon return

predictability within each asset class.

Further, because carry is a general concept, we also apply it to other asset markets that

have not been extensively studied for return predictability. We examine the cross-section

of US Treasuries across maturities, US credit portfolios, and US equity index options

across moneyness, and find equally strong return predictability from our carry measure in

each of these markets. These out-of-sample tests highlight the generality and robustness

of carry as a predictor of returns.

We examine how much of the returns to carry strategies can be explained by other

global return factors such as value, momentum, and time-series momentum (following

Asness, Moskowitz, and Pedersen (2012) and Moskowitz, Ooi, and Pedersen (2012)) within

each asset class as well as across all asset classes. The relation between carry and these

other known predictors of returns varies across asset classes. Carry is positively related

to value in equities, is related to momentum in fixed income and commodities, and is

unrelated to both in Treasuries, currencies, credit, or index options. However, we find

that none of these other factors can explain the returns to carry and that carry represents

a unique return predictor in each asset class above and beyond these factors.

This joint approach of studying carry and its return predictability simultaneously

across different asset classes provides new insights that challenges existing asset pricing

theory. First, we find that a zero-cost carry trade portfolio, which goes long high carry

securities and short low ones within each asset class earns an annualized Sharpe ratio

of 0.7 on average, indicating a strong cross-sectional link between carry and expected

returns in each asset class. Forming a portfolio of carry strategies diversified across all

asset classes earns a Sharpe ratio of 1.1, suggesting significant diversification benefits from

applying carry more broadly across different asset classes. This large Sharpe ratio presents

a significantly greater challenge for asset pricing models that already struggle to explain

the equity premium, the currency carry strategy, and a number of stock market strategies

that have significantly smaller Sharpe ratios (see Hansen and Jagannathan (1997)).

Second, by studying multiple asset classes at the same time, we provide out-of-sample

tests of existing theories and new insights on return predictability to guide new theories.
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For example, the large literature on carry trades in currencies seeks to explain the high

Sharpe ratios of carry strategies based on the crash risk commonly documented for

currency carry trades. While we find high positive Sharpe ratios across carry strategies in

all asset classes, the negative skewness of currency carry trades is not present in all asset

classes. Moreover, the diversified carry portfolio across all asset classes has a skewness

close to zero and smaller tails than a diversified passive exposure to all asset classes (e.g.,

the global market portfolios), presenting a puzzle for models seeking to explain the high

average carry returns based on crash risk.3

To gain further insight into the source of the carry return premium, we decompose the

returns to carry in each asset class into a passive and a dynamic component. The passive

component comes from being on average long (short) securities that experience high (low)

average returns. The dynamic component captures how well variation in carry (around its

average) predicts future returns. We find that the dynamic component of carry strategies

contributes to most of the returns to the equity, fixed income, and options carry strategies,

and about half of the returns to the US Treasury, currency, credit, and commodity carry

strategies. The substantial dynamic component in every asset class indicates that carry

fluctuates over time and across assets, and that these fluctuations are associated with

variation in expected returns.

Using a set of predictive regressions of future returns of each asset on its carry, we

also find strong evidence of time-varying risk premia, where carry predicts future returns

with a positive coefficient in every asset class. However, the magnitude of the predictive

coefficient differs across asset classes, identifying whether carry is positively or negatively

related to future price appreciation (as identified by equation (1)). For most asset classes,

the predictive coefficient is (not significantly different from) one, indicating that carry does

not predict future price changes, or that a carry investor earns the full carry—nothing

more or less—on average. In several cases, the point estimate is greater than one, implying

that an investor earns more than the carry as price changes further add to returns. For

commodities and options, however, the coefficient is less than one, where carry predicts

negative future price changes.

Although the cross-sectional return predictability underlies our basic carry strategies

(where we go long high carry securities and short low carry ones), we also find significant

3Brunnermeier, Nagel, and Pedersen (2008) show that the currency carry trade is exposed to liquidity
risk, which is enhanced by occasional crashes that could lead to limited arbitrage and slow price
adjustments. Bacchetta and van Wincoop (2010) present a related explanation based on infrequent
revisions of investor portfolio decisions. Lustig and Verdelhan (2007) suggest that the currency carry
trade is exposed to consumption growth risk from the perspective of a U.S. investor, Farhi and Gabaix
(2008) develop a theory of consumption crash risk (see also Lustig, Roussanov, and Verdelhan (2010),
and Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011) consider peso problems.
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time-series predictability from carry as well, where carry is useful in timing a given

security—going long the security when carry is positive (or above its long-run mean)

and short when carry is negative (or below its long-run mean). We find that the timing

strategies’ profitability coincides with the strength of the dynamic component of carry

across asset classes.

Despite the high Sharpe ratios of our carry strategies, they are far from riskless and

exhibit sizeable declines that are concentrated in time across asset classes. Carry returns

tend to be low during global recessions, and this feature appears to hold uniformly across

markets.

Flipping the analysis around, we also identify the worst and best carry return

episodes for the diversified carry strategy applied across all asset classes. We term these

episodes carry “drawdowns” and “expansions.” We find that the three biggest global carry

drawdowns (August 1972 to September 1975, March 1980 to June 1982, and August 2008

to February 2009) coincide with major global business cycle and macroeconomic events.

Reexamining each individual carry strategy within each asset class, we find that during

carry drawdowns all carry strategies in every asset class do poorly, and, moreover, perform

significantly worse than passive exposures to these markets during these times. Hence,

part of the return premium earned on average for going long carry may be compensation

for exposure that generates large losses during extreme times of global recessions. Whether

these extreme times are related to macroeconomic risks and heightened risk aversion or

are times of limited capital and arbitrage activity and funding squeezes remains an open

question. Both may be true during these times and may be contributing to the returns

associated with carry trades across markets.

While the carry trade clearly has risk, its large returns across a variety of diverse asset

classes are nevertheless difficult to explain entirely by macroeconomic risk and challenge

many macroeconomic models (Lucas (1978), Campbell and Cochrane (1999), Bansal and

Yaron (2004)). Alternatively, carry trade returns could be driven by limited arbitrage

(Shleifer and Vishny (1997)), transaction costs and funding liquidity risk from margin

requirements or other funding issues (Brunnermeier and Pedersen (2009), Gârleanu and

Pedersen (2011)).

Our work relates to the extensive literature on the currency carry trade and the

associated failure of uncovered interest rate parity. However, our study offers a much

broader concept of carry that not only captures the currency carry trades focused on in

the literature, but also an array of assets from many different asset classes. We show that

a carry return premium is present in all nine of the asset classes we study and highlight

the characteristics that are unique and common across these asset classes that may help
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identify explanations for the carry return premium in general.

Our study also relates to the literature on return predictability that seems to be

segregated by asset class. In addition to the currency literature, the literature on bonds

has its own set of predictors, as do commodities, and equities.4 All of these studies

focus on a single asset class or market at a time and ignore how different asset classes

or markets behave simultaneously. We show that many of these seemingly different and

unrelated variables can in fact be tied together through the concept of carry. Moreover,

using this unifying framework of carry, we also identify similar return patterns in markets

not previously explored such as US Treasuries, US credit, and US equity index options.

These additional asset classes are also shown to be linked to international equities, bonds,

currencies, and commodities through carry.

Finally, our paper contributes to a growing literature on global asset pricing that

analyzes multiple markets jointly. Asness, Moskowitz, and Pedersen (2012) study cross-

sectional value and momentum strategies within and across individual equity markets,

country equity indices, government bonds, currencies, and commodities simultaneously.

Moskowitz, Ooi, and Pedersen (2012) also document time-series momentum in equity

index, currency, commodity, and bond futures that is distinct from cross-sectional

momentum. Fama and French (2011) study the relation between size, value, and

momentum in global equity markets across four major regions (North America, Europe,

Japan, and Asia Pacific). By jointly studying different markets simultaneously, we seek

to help identify and rule out various explanations for the existence of return premia

globally across markets. Macro-finance theory seeking to explain carry return premia

should confront the ubiquitous presence of carry returns across vastly different asset classes

and their commonality.

The remainder of the paper is organized as follows. Section I. defines carry and shows

how it relates to expected returns for each asset class. Section II. considers the returns

of carry strategies globally across asset classes, relating carry to other known predictors

of returns and applying carry to assets not previously studied. Section III. decomposes

carry returns into the dynamic and static components of a carry trade and examines the

relation between carry and expected price appreciation both in the time-series and cross-

section of asset returns. Section IV. investigates the risk of carry strategies generally and

4Studies focusing on international equity returns include Chan, Hamao, and Lakonishok (1991), Griffin
(2002), Griffin, Ji, and Martin (2003), Hou, Karolyi, and Kho (2010), Rouwenhorst (1998), Fama and
French (1998), and further references in Koijen and Van Nieuwerburgh (2011). Studies focusing on
government bonds across countries include Ilmanen (1995) and Barr and Priestley (2004). Studies focusing
on commodities returns include Fama and French (1987), Bailey and Chan (1993), Bessembinder (1992),
Casassus and Collin-Dufresne (2005), Erb and Harvey (2006), Acharya, Lochstoer, and Ramadorai (2010),
Gorton, Hayashi, and Rouwenhorst (2007), Tang and Xiong (2010), and Hong and Yogo (2010).
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how carry relates to global business cycle and liquidity risks. Section V. concludes.

I. Understanding Carry: A Characteristic of Any Asset

We decompose the return to any security into two components: carry and price

appreciation. The carry return can be thought of as the return to a security assuming

its price stays constant. Hence, carry can be observed in advance. We detail below the

decomposition of different securities’ returns into carry versus price appreciation across

nine diverse asset classes: currencies, equities, global bonds, commodities, US Treasuries,

credit, and call and put index options.

We first consider estimating carry from futures contracts, which can be applied

generally to many of our asset classes. Consider a futures contract that expires in period

t + 1 with a current futures price Ft and spot price of the underlying security St. We

first define the return of the futures. Assume an investor allocates Xt dollars today of

capital to finance each futures contract (where Xt must be at least as large as the margin

requirement). Next period, the value of the margin capital and the futures contract is

equal to Xt(1+ rf
t )+Ft+1−Ft, where rf

t is the risk-free interest rate today that is earned

on the margin capital. Hence, the return per allocated capital over one period is

rtotal return
t+1 =

Xt(1 + rf
t ) + Ft+1 − Ft −Xt

Xt
=

Ft+1 − Ft

Xt
+ rf

t (2)

Therefore, the return in excess of the risk-free rate is

rt+1 =
Ft+1 − Ft

Xt
. (3)

The carry Ct of the futures contract is then computed as the futures excess return under

the assumption of a constant spot price from t to t + 1. (The carry can alternatively be

defined as the total return under this assumption.) Given that the futures price expires at

the future spot price (Ft+1 = St+1) and the assumption of constant spot prices (St+1 = St),

we have that Ft+1 = St. Therefore, the carry is defined as

Ct =
St − Ft

Xt
. (4)

For most of our analysis, we compute returns and carry based on a “fully-collateralized”

position, meaning that the amount of capital allocated to the position is equal to the
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futures price, Xt = Ft.
5 The carry of a fully-collateralized position is therefore

Ct =
St − Ft

Ft
. (5)

We can explicitly decompose the (fully-collateralized) return into its expected return plus

an unexpected price shock to gain insight into how carry relates to expected returns.

Using the definition of carry, we can decompose the excess return on the futures as

rt+1 = Ct + Et

(
∆St+1

Ft

)

︸ ︷︷ ︸

Et(rt+1)

+ut+1, (6)

where ∆St+1 = St+1 − St and ut+1 = (St+1 − Et(St+1))/Ft is the unexpected price shock.

Equation (6) shows how carry, Ct, is related to the expected return Et(rt+1), but the

two are not necessarily the same. The expected return on an asset is comprised of both

the carry on the asset and the expected price appreciation of the asset, which depends on

the specific asset pricing model used to form expectations and its risk premia. The carry

component of a futures contract’s expected return, however, can be measured in advance

in a straightforward “mechanical” way without the need to specify a pricing model or

stochastic discount factor. Put differently, carry is a simple observable characteristic, that

is a component of the expected return on an asset. Furthermore, carry may be relevant

for predicting expected price changes which also contribute to the expected return on

an asset. That is, Ct may also provide information for predicting Et(∆St+1/Ft), which

we investigate empirically in this paper. Equation (6) provides a unifying framework for

carry and its link to risk premia across a variety of asset classes. The rest of the paper

explores this relationship empirically across the nine asset classes we study.

We apply this carry definition to currency forwards, equity futures, and commodity

futures and discuss in more detail how to interpret the carry for each asset class. Further,

we also broaden our definition of carry to other asset classes, such as options and corporate

bonds or other assets where futures contracts are not available. Examining these other

asset classes provides robustness on both our methodology for computing carry as well as

additional test assets.

In general, we define carry as the return if market conditions stay the same. We show

precisely how we operationalize this definition for each asset class. In most cases, it is

clear how to apply this definition; for instance, one can create a synthetic futures price

5However, when considering, for instance, yield curve positions with fundamentally different levels of
risk, we can choose the position sizes Xt to equalize risk across positions.
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of an asset and apply equation (5). In some cases, our general definition has more than

one interpretation, however, as one must decide which market conditions are assumed

constant. For instance, for bonds the carry could be the return assuming that the bond

price or the entire yield curve stays constant. As another example, one can compute

carry as the return if the nominal or real (i.e., inflation-adjusted) price stays constant. In

currencies, for example, defining carry as the return if the real exchange rate stays the

same implies that carry is the real interest rate. Appendix A also shows that the same

carry measures can be used for foreign-denominated futures contracts. As detailed below,

we try to use the simplest possible measures of carry for each asset class, namely the

nominal measure consistent with equation (5).

A. Currency Carry

We begin with the classic carry trade studied in the literature—the currency carry trade—

which is a trade that goes long high carry currencies and short low carry currencies. For

a currency, the carry is simply the local interest rate in the corresponding country—

investing in a currency by literally putting cash into a country’s money market earns the

interest rate if the exchange rate (the “price of the currency”) does not change.

Most speculators get foreign exchange exposure through a currency forward and our

data on currencies comes from 1-month currency forward contracts (detailed in the next

section). To derive the carry of a currency from forward rates, recall that the no-arbitrage

price of a currency forward contract with spot exchange rate St (measured in number of

local currency per unit of foreign currency), local interest rate rf , and foreign interest

rate rf∗ is Ft = St(1 + rf
t )/(1 + rf∗

t ). Therefore, the carry of the currency is

Ct =
St − Ft

Ft
=
(

rf∗
t − rf

t

) 1

1 + rf
t

. (7)

The carry of investing in a forward in the foreign currency is the interest-rate spread,

rf∗ − rf , adjusted for a scaling factor close to one, (1 + rf
t )−1. The carry is the foreign

interest rate in excess of the local risk-free rate rf because the forward contract is a

zero-cost instrument whose return is an excess return.6

There is an extensive literature studying the carry trade in currencies. The historical

positive return to currency carry trades is a well known violation of the so-called uncovered

6The scaling factor simply reflects that a currency exposure using a futures contract corresponds to
buying 1 unit of foreign currency in the future, which corresponds to buying (1 + r

f
t )−1 units of currency

today. The scaling factor could be eliminated if we changed the assumed position size, that is, changed
Xt in equation 4.
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interest-rate parity (UIP). The UIP is based on the simple assumption that all currencies

should have the same expected return, but many economic settings would imply differences

in expected returns across countries. For instance, differences in expected currency returns

could arise from differences in consumption risk (Lustig and Verdelhan (2007)), crash risk

(Brunnermeier, Nagel, and Pedersen (2008), Burnside, Eichenbaum, Kleshchelski, and

Rebelo (2011)), liquidity risk (Brunnermeier, Nagel, and Pedersen (2008)), and country

size (Hassan (2011)), where a country with more exposure to consumption or liquidity

risk could have both a high interest rate and a cheaper exchange rate.

While we investigate the currency carry trade and its link to macroeconomic and

liquidity risks, the goal of our study is to investigate the role of carry more broadly across

asset classes and identify the characteristics of carry returns that are common and unique

to each asset class. As we show in the next section, some of the results in the literature

pertaining to currency carry trades, such as crashes, are not evident in all other asset

classes, while other characteristics, such as high Sharpe ratios and exposure to global

business cycles, are more common to carry trades in general across all asset classes.

B. Global Equity Carry

If market conditions do not change for equities, which in this case corresponds to stock

prices and dividends, then the return on equities comes solely from dividends—hence,

carry is the dividend yield today.

We implement a global equity carry strategy via futures, which leads to another

measure of carry. While we do not always have an equity futures contract with exactly one

month to expiration, we interpolate between the two nearest-to-maturity futures prices

to compute a consistent series of synthetic one-month equity futures prices.7

The no-arbitrage price of a futures contract is Ft = St(1 + rf
t ) − EQ

t (Dt+1), where

the expected dividend payment D is computed under the risk-neutral measure Q, and

rf
t is the risk-free rate at time t in the country of the equity index.8 Substituting this

expression back into equation (5), the carry for an equity future can be rewritten as

Ct =
St − Ft

Ft

=

(

EQ
t (Dt+1)

St

− rf
t

)

St

Ft

. (8)

7We only interpolate the futures prices to compute the equity carry. We use the most actively traded
equities contract to compute the return series, see Appendix B for details on the data construction.

8Binsbergen, Brandt, and Koijen (2012) and Binsbergen, Hueskes, Koijen, and Vrugt (2013) study

the asset pricing properties of dividend futures prices, E
Q
t (Dt+n), n = 1, 2, . . . , in the US, Europe, and

Japan.
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The carry of an equity futures contract is simply the expected dividend yield minus the

local risk-free rate, multiplied by a scaling factor which is close to one, St/Ft.

To further understand the relationship between carry and expected returns, consider

Gordon’s growth model for the price St of a stock with (constant) dividend growth g

and expected return E(R), St = D/(E(R) − g). This standard equity pricing equation

implies that the expected return is the dividend yield plus the expected dividend growth,

E(R) = D/S + g. Or, the expected return is the carry, D/S, plus the expected price

appreciation arising from the expected dividend growth, g. If the dividend yield varies

independently of g, then the dividend yield is clearly a signal of expected returns. If, on

the other hand, dividend growth is high when the dividend yield is low, then the dividend

yield would not necessarily predict expected returns, as the two components of E(R)

would offset each other. In this case, market prices would on average take back part of

the carry.

If expected returns do vary, then it is natural to expect carry to be positively related

to expected returns: If a stock’s expected return increases while dividends stay the same,

then its price drops and its dividend yield increases (Campbell and Shiller (1988)). Hence,

a high expected return leads to a high carry. Indeed, this discount-rate mechanism

is consistent with standard macro-finance models, such as Bansal and Yaron (2004),

Campbell and Cochrane (1999), Gabaix (2009), Wachter (2010), and models of time-

varying liquidity risk premia (Acharya and Pedersen (2005)). We investigate in the next

section the relation between carry and expected returns for equities as well as the other

asset classes and test whether these relations are consistent with theory.

As the above equations indicate, carry for equities is related to the dividend yield,

which has been extensively studied as a predictor of returns, starting with Campbell

and Shiller (1988) and Fama and French (1988). Our carry measure for equities and the

standard dividend yield used in the literature are related, but they are not the same.

Carry provides a forward-looking measure of dividends derived from futures prices, while

the standard dividend yield used in the prediction literature is backward looking. We show

below and in Appendix D that dividend yield strategies for equities are indeed different

from our equity carry strategy.

C. Commodity Carry

If you make a cash investment in a commodity by literally buying and holding the physical

commodity itself, then the carry is the convenience yield or net benefits of use of the

commodity in excess of storage costs. While the actual convenience yield is hard to
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measure (and may depend on the specific investor), the carry of a commodity futures

or forward can be easily computed and represents the expected convenience yield of the

commodity. Similar to the dividend yield on equities, where the actual dividend yield may

be hard to measure since future dividends are unknown in advance, the expected dividend

yield can be backed out from futures prices. Hence, one of the reasons we employ futures

contracts is to easily and consistently compute the carry across asset classes. The no-

arbitrage price of a commodity futures contract is Ft = St(1 + rf
t − δt), where δt is the

convenience yield in excess of storage costs. Hence, the carry for a commodity futures

contract is,

Ct =
St − Ft

Ft
=
(
δt − rf

) 1

1 + rf
t − δt

, (9)

where the commodity carry is the expected convenience yield of the commodity in excess

of the risk free rate (adjusted for a scaling factor that is close to one).

To compute the carry from equation (9), we need data on the current futures price Ft

and current spot price St. However, commodity spot markets are often highly illiquid and

clean spot price data on commodities are often unavailable. To combat this data issue,

instead of examining the “slope” between the spot and futures prices, we consider the

slope between two futures prices of different maturity. Specifically, we consider the price

of the nearest-to-maturity commodity futures contract with the price of the next-nearest

available futures contract on the same commodity. Suppose that the nearest to maturity

futures price is F 1
t with T1 months to maturity and the second futures price is F 2

t with

T2 months to maturity, where T2 > T1. In general, the no-arbitrage futures price can be

written as F Ti

t = St(1 + (rf − δt)Ti). Thus, the carry of holding the second contract can

be computed by assuming that its price will converge to F 1
t after T2 −T1 months, that is,

assuming that the price of a T1-month futures stays constant:

Ct =
F 1

t − F 2
t

F 2
t (T2 − T1)

=
(

δt − rf
t

) St

F 2
t

, (10)

where we divide by T2−T1 to compute the carry on a per-month basis. Following Equation

(10), we can simply use data from the futures markets—specifically, the slope of the futures

curve—to get a measure of carry that captures the convenience yield.9

9Another interpretation of Equation (10) is as follows: Derive synthetic spot and 1-month futures
prices by linearly interpolating the two available futures prices, F 1 and F 2, and then compute the 1-
month carry as before using these synthetic prices. It is easy to see that this yields the same expression
for carry as equation (10). In principal, we could also compute carry in other asset classes using this
method based on two points on the futures curve (i.e., not rely on spot prices). However, since spot price
data is readily available in the other asset classes, this is unnecessary. Moreover, we find that the carry
calculated from the futures curve in the other asset classes is nearly identical to the carry computed from
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As seen from the above equations, carry provides an interpretation of some of the

predictors of commodity returns examined in the literature (Gorton, Hayashi, and

Rouwenhorst (2007), Hong and Yogo (2010), Yang (2011)) and is linked to the convenience

yield on commodities.

D. Global Bond Carry

Calculating carry for bonds is perhaps the most ambiguous since there are several

reasonable ways to define carry for fixed income instruments. For example, consider

a bond with T -months to maturity, coupon payments of D, par value P̄ , price P T
t , and

yield to maturity yT
t . There are several different ways to define the carry of this bond.

Assuming that its price stays constant, the carry of the bond would be the current yield,

D/P T
t , if there is a coupon payment over the next time period, otherwise it is zero.

However, since a bond’s maturity changes as time passes, it is not natural to define carry

based on the assumption that the bond price stays constant (especially for zero-coupon

bonds).

A more useful definition of carry arises under the assumption that the bond’s yield

to maturity stays the same over the next time period. The carry could then be defined

as the yield to maturity (regardless of whether there is a coupon payment). To see this,

note that the price today of the bond is,

P T
t =

∑

i∈{coupon dates>t}

D(1 + yT
t )−(i−t) + P̄ (1 + yT

t )−(T−t), (11)

and if we assume that the yield to maturity stays the same, then the same corresponding

formula holds for the bond next period as well, P T−1
t+1 . Thus, the value of the bond

including coupon payments next period is,

P T−1
t+1 +D ·1[t+1∈{coupon dates}] =

∑

i∈{coupon dates>t}

D(1+yT
t )−(i−t−1)+P̄ (1+yT

t )−(T−t−1). (12)

Hence, the carry is

Ct =
P T−1

t+1 + D · 1[t+1∈{coupon dates}] − P T
t

P T
t

= yT
t . (13)

The carry in excess of the short-term risk-free rate (i.e., the carry of a position financed

spot and futures prices in those asset classes. Hence, using the futures curve to calculate carry appears to
be equivalent to using spot-futures price differences, justifying our computation for carry in commodities.
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by borrowing) is then the term spread:

Ct = yT
t − rf

t . (14)

Perhaps the most compelling definition of carry is the return on the bond if the entire

term structure of interest rates stays constant, i.e., yτ
t+1 = yτ

t for all maturities τ . In this

case, the carry is the bond return assuming that the yield to maturity changes from yT
t

to yT−1
t . In this case, the carry (in terms of excess returns) is

Ct =
P T−1

t+1 (yT−1
t ) + D · 1[t+1∈coupon dates] − P T

t

P T
t

− rf
t

= yT
t − rf

t +
P T−1

t+1 (yT−1
t ) − P T−1

t+1 (yT
t )

P T
t

(15)

∼= yT
t − rf

t
︸ ︷︷ ︸

slope

−Dmod
(
yT−1

t − yT
t

)

︸ ︷︷ ︸

roll down

where the latter approximation involving the modified duration, Dmod, yields a simple way

to think of carry. Intuitively, equation (15) shows that if the term structure of interest

rates is constant, then the carry is the bond yield plus the “roll down,” which captures the

price increase due to the fact that the bond rolls down the yield curve. As the bond rolls

down the (assumed constant) yield curve, the yield changes from yT
t to yT−1

t , resulting in

a return which is minus the yield change times the modified duration.

To be consistent with the other asset classes, we would like to compute the bond carry

using futures data. Unfortunately, liquid bond futures contracts are only traded in a

few countries and, when they exist, there are often very few contracts (often only one).

Further complicating matters is the fact that different bonds have different coupon rates

and the futures price is subject to cheapest-to-deliver options. To simplify matters and

create a broader global cross-section, we derive synthetic futures prices based on data on

zero-coupon rates as follows.10

We compute the carry of a synthetic one-month futures. Consider a futures contract

that gives the obligation to buy a 9-year-and-11-months zero-coupon bond in one month

from now. The current price of this one-month futures is Ft = (1+rf
t )/(1+y10Y

t )10, where

y10Y
t is the current yield on a 10-year zero-coupon bond. (This expression for the futures

price follows from the fact that the futures payoff can be replicated by buying a 10-year

bond.) The current “spot price” is naturally the current price of a 9-year-and-11-month

10For countries with actual, valid bond futures data, the correlation between actual futures returns and
our synthetic futures returns exceeds 0.95.
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zero-coupon bond, St = 1/(1 + y9Y 11M
t )9+11/12. Hence, the carry as defined in equation

(5) is given by

Ct =
St − Ft

Ft
=

1/(1 + y9Y 11M
t )9+11/12

(1 + rf
t )/(1 + y10Y

t )10
− 1. (16)

While we compute the carry using this exact formula, we can get an intuitive expression

using the same approximation as before

Ct ' y10Y
t − rf

t − Dmod(y10Y
t − y9Y 11M

t ). (17)

Hence, the futures-based carry calculation corresponds to the assumption that the entire

term structure of interest rates stays constant.

Again, the above equations highlight how carry captures standard predictors for bond

returns. For example, a standard predictor of bond returns in the time series is the yield

spread (Fama and Bliss (1987) and Campbell and Shiller (1991)), where our measure of

carry equals the yield spread plus a roll-down component. To understand the importance

of the roll-down component, we can compare our carry measure to the yield spread

between long-term (10-year) and short-term (3-month) bond yields. In our sample, the

average (across countries) time-series correlation between the yield spread and the carry

signal is 0.90, and if we use the yield spread, instead of the carry, as a signal for form

portfolios, the returns generated are 0.91 correlated.

E. Carry of the Slope of Global Yield Curves

In addition to the synthetic global bond futures described above, we also examine tests

assets in each country that capture the slope of the yield curve. Specifically, we consider

in each country a long position in the 10-year bond and a short position in the 2-year

bond. Naturally, the carry of this slope-of-the-yield-curve position in country i is

Cslope,i
t = C10Y,i

t − C2Y,i
t . (18)

This provides another measure of carry for fixed income securities in each market that, in

this case, seeks to predict the returns associated with the slope of the yield curve in each

market rather than its level (as above).

F. Carry Across Treasuries of Different Maturities

We also examine carry for US Treasuries from 1 to 10 years of maturity. These bonds

naturally have very different risks and are therefore not directly comparable. For instance,
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a portfolio that invests long $1 of 10-year bonds and shorts $1 of 1-year bonds is dominated

by the 10-year bonds, which are far more volatile. To put the bonds on a common scale, we

consider duration-adjusted bond returns. Specifically, we consider portfolios of duration-

adjusted bonds where each bond i is scaled by the inverse of its duration, Di
t. Naturally,

our measure of carry must correspond to the position size. Hence, a position of 1/Di
t

bonds with a carry of C i
t (defined in Section D) is:

Cduration-adjusted,i
t =

C i
t

Di
t

. (19)

This corresponds to duration-adjusting the position size Xt in equations 3 and 4.

G. Credit Market Carry

We also look at the carry of US credit portfolios sorted by maturity and credit quality.

We compute the carry for duration-adjusted bonds in the same way as we do for global

bonds using equations (17) and (19). Clearly, this definition of carry is the credit spread

(the yield over the risk free rate) plus the roll down on the credit curve.

H. Equity Index Option Carry

Finally, we apply the concept of carry to U.S. equity index options. We define the price

of a call option at time t with maturity T , strike K, implied volatility σT , and underlying

Sit as F Call
t (Sit, K, T, σT ). The equivalent put price is denoted by F Put

t (Sit, K, T, σT ) .

We apply the same concept of carry as before, that is, the return on a security if market

conditions do not change.

In the context of options, this implies for the definition of carry (j = Call, Put):

Cj
it(K, T, σT ) =

F j
t (Sit, K, T − 1, σT−1)

F j
t (Sit, K, T, σT )

− 1, (20)

which depends on the maturity, the strike, and the type of option traded. We could

subtract the risk-free rate from this expression, but all options are traded in US markets

and hence this will not change the rank of the signals in our cross-sectional strategies.11

To get some intuition, we can approximate the carry in terms of the derivative of the

option price with respect to time (i.e., its theta θ) and implied volatility (vega ν) as the

11Our equity strategies are a special case of the call options carry strategy, where limK → 0 and T = 1.
In this case, limK→0 F C = limK→0 E(M(S − K)+) = E(MS), which is the forward price of equities.
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stock price (Sit) is constant in the carry calculation:

F j
t (Sit, K, T − 1, σT−1) ' F j

t (Sit, K, T, σT ) (21)

−θj
t(Sit, K, T, σT ) − νj

t(Sit, K, T, σT )(σT − σT−1).

This allows us to write the option carry as:

Cj
it(K, T, σT ) '

−θj
t (Sit, K, T, σT ) − νj

t(Sit, K, T, σT )(σT − σT−1)

F j
t (Sit, K, T, σT )

. (22)

The size of the carry is therefore driven by the time decay (via θ) and the roll down on

the implied volatility curve (via ν). The option contracts that we consider differ in terms

of their moneyness, maturity, and put/call characteristic as we describe further below.12

II. Carry Trade Returns Across Asset Classes

We construct our carry trade portfolio returns for each asset class as well as across all the

asset classes we examine. First, we briefly describe our sample of securities in each asset

class and how we construct our return series, then we consider the carry trade portfolio

returns within and across the asset classes and examine their performance over time.

Appendix B details the data sources.

A. Data and Summary Statistics

Table I presents summary statistics for the returns and the carry of each of the instruments

we use, including the starting date for each of the series. There are 13 country equity

index futures: the U.S. (S&P 500), Canada (S&P TSE 60), the UK (FTSE 100), France

(CAC), Germany (DAX), Spain (IBEX), Italy (FTSE MIB), The Netherlands (EOE

AEX), Norway (OMX), Switzerland (SMI), Japan (Nikkei), Hong Kong (Hang Seng),

and Australia (S&P ASX 200).

12Starting in 2004, the CBOE introduced futures on the VIX index, where the payoff of these futures
contracts equals the VIX index. Following our definition of carry, the carry of these contracts equals the
current level of the VIX relative to the futures price or the risk-neutral expectation of the change in the
VIX. On average, the carry is negative for these securities, but it turns positive during bad economic
periods when the VIX typically spikes upward and the volatility term structure inverts. Our preliminary
evidence suggests that the carry predicts the VIX futures returns in the time-series, consistent with what
we find for index options. Recently, various exchanges across the world introduced volatility futures on
different indices. The history is too short and the contracts too illiquid to implement a cross-sectional
strategy, but this may be interesting to explore at a future date when longer and more reliable data
becomes available.
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We consider 20 foreign exchange forward contracts covering the period November 1983

to September 2012 (with some currencies starting as late as February 1997 and the Euro

beginning in February 1999). We also include the U.S. as one of the countries for which

the carry and currency return are, by definition, equal to zero.

The commodities sample covers 24 commodities futures dating as far back as January

1980 (through September 2012). Not surprisingly, commodities exhibit the largest cross-

sectional variation in mean and standard deviation of returns since they contain the most

diverse assets, covering commodities in metals, energy, and agriculture/livestock.

The global fixed income sample covers 10 government bonds starting as far back as

November 1983 through September 2012. Bonds exhibit the least cross-sectional variation

across markets, but there is still substantial variation in average returns and volatility

across the markets. These same bond markets are used to compute the 10-year minus

2-year slope returns in each of the 10 markets.

For US Treasuries, we use standard CRSP bond portfolios with maturities equal to 1

to 12, 13 to 24, 25 to 36, 37 to 48, 49 to 60, and 61 to 120 months. The sample period

is August 1971 to September 2012. To compute the carry, we use the bond yields of

Gurkaynak, Sack, and Wright.13

For credit, we use the Barclays’ corporate bond indices for “Intermediate” (average

duration about 5 years) and “Long-term” (average duration about 10 years) maturities.

In addition, we have information on the average maturity within a given portfolio and

the average bond yield. In terms of credit quality, we consider AAA, AA, A, and BAA.

The sample period is January 1973 to September 2012.

Finally, for index options we use data from OptionMetrics starting in January 1996

through December 2011. We use the following indices: Dow Jones Industrial Average

(DJX), NASDAQ 100 Index (NDX), CBOE Mini-NDX Index (MNX), AMEX Major

Market Index (XMI), S&P500 Index (SPX), S&P100 Index (OEX), S&P Midcap 400

Index (MID), S&P Smallcap 600 Index (SML), Russell 2000 Index (RUT), and PSE

Wilshire Smallcap Index (WSX).

We take positions in options between 30 and 60 days to maturity at the last trading

day of each month. We exclude options with non-standard expiration dates. We hold the

positions for one month.14

We then construct two delta groups for calls and puts, respectively:15

13See http://www.federalreserve.gov/econresdata/researchdata.htm.
14The screens largely follow from Frazzini and Pedersen (2011), but the contracts included in the

strategy are less liquid.
15Results are stronger if we include all five delta groups as defined in Frazzini and Pedersen (2011).
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1. Out of the money: ∆call ∈ [0.2, 0.4) or ∆put ∈ [−0.4,−0.2)

2. At the money: ∆call ∈ [0.4, 0.6) or ∆put ∈ [−0.6,−0.4)

We implement the carry strategies separately for call and put options. We select one

option per delta group for each index. If multiple options are available, we first select the

contract with the highest volume. If there are still multiple contracts available, we select

the contracts with the highest open interest. In some rare cases, we still have multiple

matches, and we then choose the option with the highest price, that is, the option that is

most in the money (in a given moneyness group). Furthermore, we do not take positions

in options for which the volume or open interest are zero for the contracts that are required

to compute the carry.

Further details on all of our data and their sources are provided in Appendix B.

B. Defining a Carry Trade Portfolio

A carry trade is a trading strategy that goes long high-carry securities and shorts low-carry

securities. There are various ways of choosing the exact carry-trade portfolio weights, but

our main results are robust across a number of portfolio weighting schemes. One way to

construct the carry trade is to rank assets by their carry and go long the top 20, 25, or

30% of securities and short the bottom 20, 25, or 30%, with equal weights applied to all

securities within the two groups, and ignore (e.g., place zero weight on) the securities in

between these two extremes. Another method, which we use, is a carry trade specification

that takes a position in all securities weighted by their carry ranking. Specifically, the

weight on each security i at time t is given by

wi
t = zt

(

rank(C i
t) −

Nt + 1

2

)

, (23)

where the scalar zt ensures that the sum of the long and short positions equals 1 and −1,

respectively. This weighting scheme is similar to that used by Asness, Moskowitz, and

Pedersen (2012) and Moskowitz, Ooi, and Pedersen (2012), who show that the resulting

portfolios are highly correlated with other zero-cost portfolios that use different weights.

By construction, the carry trade portfolio always has a positive carry itself. We

compute the carry of a portfolio of securities as follows. Consider a set of securities

indexed by i = 1, ..., Nt, where Nt is the number of available securities at time t. Security

i has a carry of C i
t computed at the end of month t and that is related to the return

ri
t+1 over the following month t + 1. Letting the portfolio weight of security i be wi

t,

the return of the portfolio is naturally the weighted sum of the returns on the securities,
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rt+1 =
∑

i w
i
tr

i
t+1. Similarly, since carry is also a return (under the assumption of no price

changes), the carry of the portfolio is simply computed as,

Cportfolio
t =

∑

i

wi
tC

i
t . (24)

The carry of the carry trade portfolio is equal to the weighted-average carry of the high-

carry securities minus the average carry among the low-carry securities:

Ccarry trade
t =

∑

wi
t>0

wi
tC

i
t −

∑

wi
t<0

|wi
t|C

i
t > 0. (25)

Hence, the carry of the carry trade portfolio depends on the cross-sectional dispersion of

carry among the constituent securities.

C. Carry Trade Portfolio Returns within an Asset Class

For each global asset class, we construct a carry strategy using portfolio weights following

equation (23) that invests in high-carry securities while short selling low-carry securities,

where each security is weighted by the rank of its carry and the portfolio is rebalanced

every month.

We consider two measures of carry: (i) The “current carry”, which is measured at

the end of each month, and (ii) “carry1-12”, which is a moving average of the current

carry over the past 12 months (including the most recent one). Carry1-12 helps smooth

potential seasonal components that can arise in calculating carry for certain assets.16 All

results in the paper pertain to the current carry, but we report results using carry1-12

in Appendix C, where the results are typically stronger, most likely due to the seasonal

issues mentioned.

Table I reports the mean and standard deviation of the carry for each asset, which

ranges considerably within an asset class (especially commodities) and across asset classes.

Table II reports the annualized mean, standard deviation, skewness, excess kurtosis, and

Sharpe ratio of the carry strategies within each asset class. For comparison, the same

16For instance, the equity carry over the next month depends on whether most companies are expected
to pay dividends in that specific month, and countries differ widely in their dividend calendar (e.g.,
Japan vs. US). Current carry will tend to go long an equity index if that country is in its dividend
season, whereas carry1-12 will go long an equity index that has a high overall dividend yield for that year
regardless of what month those dividends were paid. In addition, some commodity futures have strong
seasonal components that are also eliminated by using carry1-12. Fixed income (the way we compute it),
currencies, and US equity index options do not exhibit much seasonal carry pattern, but we also consider
strategies based on both their current carry and carry1-12 for completeness.
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statistics are reported for the returns to a passive long investment in each asset class,

which is an equal weighted portfolio of all the securities in each asset class.

Panel A of Table II indicates that all of the carry strategies in all nine asset classes

have significant positive returns. The average returns to carry range from 0.24% for US

credit to 179% for US equity index put options. However, these strategies face markedly

different volatilities, so looking at their Sharpe ratios is more informative. The Sharpe

ratios for the carry strategies range from 0.37 for call options to 1.80 for put options,

with the average being 0.74 across all asset classes. A carry strategy in every asset

class outperforms a passive exposure (equal-weighted investment) to the asset class itself,

except for the global bond level and slope strategies where the Sharpe ratios are basically

the same. A passive exposure to the asset classes only generates a 0.21 Sharpe ratio on

average, far lower than the 0.75 Sharpe ratio of the carry strategies on average. Further,

the long-short carry strategies are (close to) market neutral, making their high returns all

the more puzzling and, as we show below, all their alphas with respect to these passive

benchmarks are significantly positive.

Panel B of Table II looks at carry trades in a coarser fashion by first grouping securities

by region or broader asset class and then generating a carry trade. For example, for

equities we group all index futures into one of five regions: North America, UK, continental

Europe, Asia, and New Zealand/Australia and compute the equal-weighted average carry

and equal-weighted average returns of these five regions. We then create a carry trade

portfolio using only these five regional portfolios. Conducting this coarser examination

of carry allows us to see whether carry trade profits are largely driven by across region

carry differences or within region carry differences when comparing the results to those

in Panel A of Table II. For equities, a carry trade across these five regions produces a

Sharpe ratio almost as large as that in Panel A of Table II.

We repeat the same exercise for global bond levels and slopes—again, assigning country

bonds to the same five regions—and for currencies, too. For commodities, we assign all

futures contracts to one of three groups: agriculture/livestock, metals, or energy. Carry

strategies based on these coarser groupings of securities produce similar, but slightly

smaller, Sharpe ratios than carry strategies formed on the disaggregated individual

security level. This suggests that significant variation in carry comes from differences

across regions and that our results are robust to different weighting schemes. For this

regional/group level analysis we also exclude US Treasuries, credit, and index options.

Hence, our results are robust to these securities as well.

The robust performance of carry strategies across asset classes indicates that carry is

an important component of expected returns. The previous literature focuses on currency
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carry trades, finding similar results to those in Table II. However, we find that a carry

strategy works at least as well in other asset classes, too, performing markedly better in

equities and put options than in currencies, and about as well as currencies in commodities,

global fixed income, and Treasuries. Hence, carry is a broader concept that can be applied

to many assets in general and is not unique to currencies.17

Examining the higher moments of the carry trade returns in each asset class, we

find the strong negative skewness associated with the currency carry trade documented

by Brunnermeier, Nagel, and Pedersen (2008). Likewise, commodity and fixed-income

carry strategies exhibit some negative skewness and the options carry strategies exhibit

very large negative skewness. However, carry strategies in equities, US Treasuries, and

credit have positive skewness. The carry strategies in all asset classes exhibit excess

kurtosis, which is typically larger than the kurtosis of the passive long strategy in

each asset class, indicating fat-tailed positive and negative returns. For instance, the

credit carry strategy exhibits positive skewness and large kurtosis as it suffers extreme

negative returns, particularly around recessions—something we investigate further in the

next section—which are then followed by even more extreme positive returns during the

recovery (resulting in positive skewness). Hence, while negative skewness may not be a

general characteristic of these carry strategies, the potential for large negative returns

appears pervasive.

D. Diversified Carry Trade Portfolio

Table II also reports the performance of a diversified carry strategy across all asset classes,

which is constructed as the equal-volatility-weighted average of carry portfolio returns

across the asset classes. Specifically, we weight each asset classes’ carry portfolio by the

inverse of its sample volatility so that each carry strategy in each asset class contributes

roughly equally to the total volatility of the diversified portfolio. This procedure is

similar to that used by Asness, Moskowitz, and Pedersen (2012) and Moskowitz, Ooi,

and Pedersen (2012) to combine returns from different asset classes with very different

volatilities.18 We call this diversified across-asset-class portfolio the global carry factor,

GCF .

17Several recent papers also study carry strategies for commodities in isolation, see for instance
Szymanowska, de Roon, Nijman, and van den Goorbergh (2011) and Yang (2011).

18Since commodities have roughly ten times the volatility of Treasuries and options have 300 times the
volatility of Treasuries and 30 times the volatility of commodities or equities, a simple equal-weighted
average of carry returns across asset classes will have its variation dominated by option carry risk and
under-represented by fixed income carry risk. Volatility-weighting the asset classes into a diversified
portfolio gives each asset class more equal representation.
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As the bottom of Panel A of Table II reports, the diversified carry trade has a

remarkable Sharpe ratio of 1.10 per annum. A diversified passive long position in all

asset classes produces only a 0.47 Sharpe ratio. These numbers suggest carry is a strong

predictor of expected returns globally across asset classes. Moreover, the substantial

increase in Sharpe ratio for the diversified carry portfolio relative to the average individual

carry portfolio Sharpe ratios in each asset class (which is 0.74), indicates that the

correlations of the carry trades across asset classes are fairly low. Sizeable diversification

benefits are obtained by applying carry trades universally across asset classes.

Panel A of Table III reports the correlations of carry trade returns across the nine

asset classes, and Panel B reports correlations across the regions/groups. Except for the

correlation between global bond level carry and the slope carry strategies, the correlations

are all close to zero. The low correlations among carry strategies in other asset classes

not only lowers the volatility of the diversified portfolio substantially, but also mutes the

negative skewness associated with currency carry trades and mitigates the excess kurtosis

associated with all carry trades. Table II shows that the negative skewness and excess

kurtosis of the diversified portfolio of carry trades are smaller than those of the passive long

position diversified across asset classes and are smaller than the average of the individual

skewness and kurtosis statistics for each asset class. (Interestingly, the diversified passive

position actually has more negative skewness and excess kurtosis than the average across

each individual asset class—the opposite of what a diversified carry portfolio achieves.)

Hence, the diversification benefits of applying carry across asset classes seem to be larger

than those obtained from investing passively long in the same asset classes.

The magnitude of the Sharpe ratios of the diversified carry strategy presents a daunting

challenge for current asset pricing models that already struggle to explain the significantly

smaller Sharpe ratios typically examined within a single asset class (e.g., currencies). A

diversified carry portfolio across asset classes is also less prone to crashes, has less negative

skewness, and smaller kurtosis than the diversified passive strategy, making the carry

strategy’s large average return even more puzzling from a crash risk perspective. On the

other hand, the carry strategy faces larger transaction costs, greater funding issues, and

limits to arbitrage than a passive strategy.

Figure 1 plots the cumulative monthly returns to the diversified carry strategy across

all asset classes. The plot is a lot smoother than that of the currency carry trade (also

plotted for reference), where crashes are more evident. The graph highlights the steady

positive returns to carry applied globally across all asset classes. These returns come from

two sources: the carry itself, plus any price appreciation that may be related to/predicted

by carry. In the next section, we investigate in more detail the relationship between carry,
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expected price changes, and total expected returns.

E. Risk-Adjusted Performance and Exposure to Other Factors

Table IV reports regression results for each carry portfolio’s returns in each asset class

on a set of other portfolio returns or factors that have been shown to explain the cross-

section of global asset returns. Specifically, we regress the time series of carry returns

in each asset class on the corresponding passive long portfolio returns (equal-weighted

average of all securities), the value and momentum factors for each asset class, and time-

series momentum (TSMOM) factors for each asset class. The global value and momentum

factors are based on Asness, Moskowitz, and Pedersen (2012) and the TSMOM factors are

those of Moskowitz, Ooi, and Pedersen (2012). These factors are computed for each asset

class separately for equities, fixed income, commodities, and currencies. For fixed income

slope and Treasuries, we use the fixed income factors and for the credit and options

strategies we use the diversified value and momentum “everywhere” factors of Asness,

Moskowitz, and Pedersen (2012) (which includes individual equity strategies, too) and

the globally diversified TSMOM factor of Moskowitz, Ooi, and Pedersen (2012).

Panel A of Table IV reports both the intercepts (or alphas) from these regressions

as well as factor exposures to these other known factors. The first column reports the

results from regressing the carry trade portfolio returns in each asset class on the equal-

weighted passive index for that asset class. The alphas for every carry strategy in every

asset class are positive and statistically significant (except for calls), indicating that, in

every asset class, a carry strategy provides abnormal returns above and beyond simple

passive exposure to that asset class. Put differently, carry trades offer excess returns

over the “local” market return in each asset class. Further, we see that the betas are

often not significantly different from zero. Hence, carry strategies provide sizeable return

premia without much market exposure to the asset class itself. The last two rows report

the R2 from the regression and the information ratio, IR, which is the alpha divided by

the residual volatility from the regression. The IRs are large, reflecting high risk-adjusted

returns to carry strategies even after accounting for its exposure to the local market index.

Looking at the value and cross-sectional and time-series momentum factor exposures,

we find mixed evidence across the asset classes. For instance, in equities, we find

that carry strategies have a positive value exposure, but no momentum or time-series

momentum exposure. The positive exposure to value, however, does not reduce the alpha

or information ratio of the carry strategy much. For fixed income, carry loads positively

on cross-sectional and time-series momentum, though again the alphas and IRs remain
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significantly positive. In commodities, a carry strategy loads significantly negatively on

value and significantly positively on cross-sectional momentum, but exhibits little relation

to time-series momentum. The exposure to value and cross-sectional momentum captures

a significant fraction of the variation in commodity carry’s returns, as the R2 jumps from

less than 1% to 20% when the value and momentum factors are included in the regression.

However, because the carry trade’s loadings on value and momentum are of opposite sign,

the impact on the alpha of the commodity carry strategy is small since the exposures to

these two positive return factors offset each other. The alpha diminishes by 29 basis points

per month, but remains economically large at 64 basis points per month and statistically

significant. Currency carry strategies exhibit no reliable loading on value, momentum, or

time-series momentum and consequently the alpha of the currency carry portfolio remains

large and significant. Similarly, for credit, no reliable loadings on these other factors are

present and hence a significant carry alpha remains. For call options, the loadings of the

carry strategies on value, momentum, and TSMOM are all negative, making the alphas

even larger. Finally, for puts there are no reliable loadings on these other factors. The

last two columns of Panel A of Table IV report regression results for the diversified GCF

on the all-asset-class market, value, momentum, and TSMOM factors. The alphas and

IRs are large and significant and there are no reliable betas with respect to these factors.

Panel B of Table IV reports results of the same regressions for the regional/group

carry strategies. Again, significant alphas remain for carry strategies in each of the asset

classes, indicating that carry is a unique characterstic that predicts returns and is not

captured by known predictors of returns in the same asset class such as general market

exposure, value, momentum, and TSMOM.

The regression results in Table IV only highlight the average exposure of the carry

trade returns to these factors. However, these unconditional estimates may mask

significant dynamic exposures to these factors. There may be times when the carry trade

in every asset class has significant positive exposure to the market and other times when

it has significant negative market exposure. We further explore the dynamics of carry

trade positions in the next section.

F. What Is New About Carry?

Our general concept of carry provides a unifying framework that synthesizes much of

the return predictability evidence found in global asset classes. Indeed, return predictors

across asset classes have mostly been treated disjointly by the literature. For example,

our carry measure in equities is related to the dividend yield and therefore equity carry
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returns naturally have a positive loading on value in Table IV. Carry in fixed income is

related to the yield spread, and in commodities carry is related to the convenience yield.

These predictors are typically treated as separate and unrelated phenomena in each asset

class. We normally don’t think about how the dividend yield in equities might be related

to the yield spread in bonds or the convenience yield in commodities or local interest rates

for currencies. Yet, the concept of carry provides a unifying framework that captures this

evidence, providing a common theme that links these predictors across all asset classes.

However, carry is different from these standard predictors and adds to the

predictability literature. Table IV shows that carry is not spanned by other unifying

themes such as value and momentum. Moreover, we also show that carry provides

additional predictive content above asset-class-specific variables. For example, for global

equities the carry is the expected dividend yield derived from futures prices relative to the

local short term interest rate, which can be quite different from the standard historical

dividend yield used in the literature. Appendix D shows that a carry strategy based

on expected dividend yield is in fact quite different from a standard value strategy that

sorts on historical dividend yields. First, we show for the US equity market, using a

long time series, that the dynamics of carry are different from the standard dividend

yield. Second, sorting countries directly on historical dividend yield rather than carry

results in a portfolio less than 0.30 correlated to the carry strategy in equities. Running a

time-series regression of carry returns in equities on a dividend yield strategy in equities

produces betas close to zero (0.07) and significant alphas. Hence, carry contains important

independent information beyond the standard dividend yield studied in the literature.

In addition to unifying and extending the set of standard predictor variables, we also

illustrate how the concept of carry provides useful predictor variables for other cross-

sections of assets not previously examined. Our inclusion of the cross-section of US

Treasuries, the cross-section of US credit portfolios, and the cross-section of US index

options provides several out of sample testing grounds for carry as a novel return predictor.

Moreover, applying a carry strategy to options on a single index results in shorting out-

of-the money put options and going long at-the-money options, which is known to be a

profitable strategy with occasionally large drawdowns. This illustrates once more that

the concept of carry can both connect and extend predictor variables and investment

strategies across many different asset classes. It may be interesting for future research

to explore alternative carry strategies for different cross-sections of assets using the same

concept we propose in this paper.
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III. How Does Carry Relate to Expected Returns?

In this section we investigate further how carry relates to expected returns. We begin by

decomposing carry strategies into their static and dynamic components.

A. Static and Dynamic Return Components

The average return of the carry trade depends on two sources of exposure: (i) a static

or “passive” return component due to the average carry trade portfolio being long

(short) securities that have high (low) unconditional returns, and (ii) a “dynamic” return

component that captures how strongly variation in carry predicts returns.

The estimated expected return on a carry strategy can be written as:

Ê (rp,t+1) =
1

T

T∑

t=1

N∑

n=1

w∗
n,trn,t+1, (26)

where N denotes the total number of contracts that are used at any point in the strategy

(potentially at different points in time) and w∗
n,t is the portfolio weight from equation (23)

when contract n is available and otherwise w∗
n,t = 0. We rewrite the expression for the

expected return by defining Tn as the set of dates where security n is used and Tn as the

number of such dates:

Ê (rp,t+1) =

N∑

n=1

Tn

T
Ên (wn,trn,t+1) (27)

=

N∑

n=1

Tn

T
Ên (wn,t) Ên (rn,t+1)

︸ ︷︷ ︸

Static component

+

N∑

n=1

Tn

T
Ên
[(

wn,t − Ên (wn,t)
)(

rn,t+1 − Ên (rn,t+1)
)]

︸ ︷︷ ︸

Dynamic component

,

where we define Ên (xn,t) ≡ T−1
n

(∑

t∈Tn
xn,t

)
as the time series average for any n and

time series xn,t.

We see that the overall average return is the sum of a passive and a dynamic

component. Naturally, Ên (wn,t) is the portfolio’s “passive exposure” to asset n, while

the “dynamic exposure” wn,t−E(wn,t) is zero on average over time, representing a timing

strategy in the asset that goes long and short according to the asset’s carry.

Table V reports the results of this decomposition, where we estimate the static and

dynamic components of returns according to equation (27). For equities, the dynamic

component comprises the entirety of the carry trade’s returns. For global bond level

and slope carry trades, the dynamic component also captures nearly all of the carry
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trade profits (86% and 99%, respectively). For Treasuries, a little less than half of the

carry returns come from the dynamic component, for commodities a little more than half

come from the dynamic component, and for the currency carry returns the split between

passive and dynamic components is approximately equal. For credit, only 30% of carry

profits come from the dynamic component, and for options all of the carry returns come

from dynamic exposure. Overall, carry trade returns appear to be due to both passive

exposures and dynamic rebalancing, with some variation across asset classes in terms of

the importance of these two components.

B. Does the Market Take Back Part of the Carry?

The significant returns to the carry trade indicate that carry is indeed a signal of expected

returns. However, to better understand the relation between carry and expected returns

it is instructive to go back to equation (6), which decomposes expected returns into carry

and expected price appreciation. To estimate this relationship, we run the following panel

regression for each asset class:

ri
t+1 = ai + bt + cC i

t + εi
t+1, (28)

where ai is an asset-specific intercept (or fixed effect), bt are time fixed effects, C i
t is the

carry on asset i at time t, and c is the coefficient of interest that measures how well carry

predicts returns.

There are several interesting hypotheses to consider. First, c = 0 means that carry does

not predict returns, consistent with a generalized notion of the “expectations hypothesis.”

Second, c = 1 means that the expected return moves one-for-one with carry. While c = 0

means that the total return is unpredictable, c = 1 means that price changes (the return

excluding carry) are unpredictable by carry. Third, c ∈ (0, 1) means that a positive

carry is associated with a negative expected price appreciation such that the market

“takes back” part of the carry, but not all. Fourth, c > 1 means that a positive carry is

associated with a positive expected price appreciation so that an investor gets the carry

and price appreciation too—that is, carry predicts further price increases. Lastly, c < 0

would imply that carry predicts such a negative price change that it more than offsets the

direct effect of a positive carry.

Table VI reports the results for each asset class with and without fixed effects. Without

asset and time fixed effects, c represents the total predictability of returns from carry

from both its passive and dynamic components. Including time fixed effects removes

the time-series predictable return component coming from general exposure to assets
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at a given point in time. Similarly, including asset-specific fixed effects removes the

predictable return component of carry coming from passive exposure to assets with

different unconditional average returns. By including both asset and time fixed effects,

the slope coefficient c in equation (28) represents the predictability of returns to carry

coming purely from variation in carry.

The results in Table VI indicate that carry is a strong predictor of expected returns,

with consistently positive and statistically significant coefficients on carry, save for

the commodity strategy, which may be tainted by strong seasonal effects in carry for

commodities. The carry1-12 strategy in Appendix C, which mitigates seasonal effects, is

a ubiquitously positive and significant predictor of returns, even for commodities.

Focusing on the magnitude of the predictive coefficient, Table VI shows that the point

estimate of c is greater than one for equities, global bond levels and slope, and credit,

and smaller than one for US Treasuries, commodities, and options, and around one for

currencies (depending on whether fixed effects are included). These results imply that for

equities, for instance, when the dividend yield is high, not only is an investor rewarded

by directly receiving large dividends (relative to the price), but also equity prices tend

to appreciate more than usual. Hence, expected stock returns appear to be comprised of

both high dividend yields and additionally high expected price appreciation. Similarly,

for fixed income securities buying a 10-year bond with a high carry provides returns from

the carry itself (i.e., from the yield spread over the short rate and from rolling down the

yield curve), and, further, yields tend to drop, leading to additional price appreciation.

This is surprising as the expectations hypothesis suggests that a high term spread implies

short and long rates are expected to increase, but this is not what we find. However, these

results must be interpreted with caution as the predictive coefficient is not statistically

significantly different from one in all but a few cases.

For currencies, the predictive coefficient is close to one, which means that high-interest

currencies neither depreciate, nor appreciate, on average. Hence, the currency investor

earns the interest-rate differential on average. This finding goes back to Fama (1984),

who ran these regressions slightly differently. Fama (1984)’s well-known result is that

his predictive coefficient has the “wrong” sign relative to uncovered interest rate parity,

which corresponds to a coefficient larger than one in our regression.

For commodities, the predictive coefficient is significantly less than one, so that when

a commodity has a high spot price relative to its futures price, implying a high carry, the

spot price tends to depreciate on average, thus lowering the realized return on average

below the carry. Similarly, we see the same thing for US Treasuries and options.

We can also examine how the predictive coefficient changes across the different
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regression specifications with and without fixed effects to see how the predictability of

carry changes once the passive exposures are removed. For example, the coefficient on

carry for equities drops very little when including asset and time fixed effects, which

is consistent with the dynamic component to equity carry strategies dominating the

predictability of returns. We also see that currency carry predictability is cut roughly

in half when the fixed effects are included, implying that the dynamic component of the

currency carry strategy contributes to about half of the return predictability.

C. Timing Strategies

Table VII reports results for pure timing strategies on each asset using carry and ignoring

any cross-sectional information from carry. Our previous results indicate that for all

carry strategies, the dynamic component is an important part of carry returns. Table VII

focuses exclusively on this dynamic component by using carry to time an investment in

each security. Specifically, for every security we go long if the carry is positive and short

if it is negative. We do this for every security within an asset class and then take the

equal-weighted average of these timing strategy returns based on carry across all securities

within an asset class. Panel A of Table VII reports the results for each asset class as well

as for the regional/group level portfolios. The returns and Sharpe ratios to these timing

strategies are all positive and significant in all asset classes, indicating that carry is highly

useful in timing a security as well as selecting securities.

Comparing the results in Table VII to those in Table II, which used carry to select

securities cross-sectionally, the magnitude of the performance of the strategies is similar.

These results are consistent with the importance of the dynamic component to carry

trades found earlier. Panel B of Table VII repeats the timing exercise, but where we go

long (short) a security if its carry is above (below) its sample mean. The specification

eliminates any cross-sectional effects from carry and is equivalent to the panel regressions

of Table VI that include contract fixed effects. The performance of these timing strategies

is also strong and consistently positive, except for index call options. This is consistent

with the findings in Table VI where the estimate for c turns negative for call options when

only contract fixed effects are included.

From a variety of perspectives and measures, we have shown that carry is a

ubiquitously useful and novel predictor of returns both in the cross-section and time-

series across all of the diverse asset classes we study. In the final section of the paper, we

explore what common risks, if any, carry strategies might be exposed to and whether the

return premium associated with carry might be compensation for those risks.

29



IV. How Risky Are Carry Strategies?

We next investigate further whether the high returns to carry strategies compensate

investors for aggregate risk. Previously, we showed that carry strategies are not very

sensitive to other known factors such as the market, value, momentum, and time-

series momentum. Here, we explore other factors suggested in the literature related to

macroeconomic and crash risks.

A. Risk Exposure of Carry Strategies

The large and growing literature on the currency carry strategy considers whether carry

returns compensate investors for crash risk or business cycle risk. By studying multiple

asset classes at the same time, we provide out-of-sample evidence of existing theories,

as well as some guidance for new theories to be developed. We have found that all

carry strategies produce high Sharpe ratios and often have high kurtosis, but find mixed

results regarding skewness. Further, from Table III, we know that carry strategies across

these asset classes are not very correlated. However, the correlations in Table III are

unconditional, estimated over the full sample period, yet we know from the results

of the previous section that carry strategies contain a large and important dynamic

component. Hence, unconditional covariance estimates may miss important dynamic

common movements among the carry strategies across asset classes.

To help identify the common risk in carry strategies, we focus on the global carry factor

in which we combine all carry strategies across all asset classes. Figure 1, which plots the

cumulative returns on the global carry factor shows that, despite its high Sharpe ratio, the

global carry strategy is far from riskless, exhibiting sizeable declines for extended periods

of time. We investigate the worst and best carry return episodes from this global carry

factor to shed light on potential common sources of risk across carry strategies.

B. Drawdowns vs. Expansions

Specifically, we identify what we call carry “drawdowns” and “expansions.” We first

compute the maximum drawdown of the global carry strategy, which is defined as:

Dt ≡
t∑

s=1

rs − max
u∈{1,...,t}

u∑

s=1

rs, (29)

where rs denotes the excess return on the global carry factor. The drawdown dynamics

are presented in Figure 2. The three biggest carry drawdowns are: August 1972 to
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September 1975, March 1980 to June 1982, and August 2008 to February 2009. The two

largest drawdowns are also the longest lasting ones, and the third longest is from May

1997 to October 1998. These drawdowns coincide with plausibly bad aggregate states of

the global economy. For example, using a global recession indicator, which is a GDP-

weighted average of regional recession dummies (using NBER data methodology), these

periods are all during the height of global recessions, including the recent global financial

crisis, as highlighted in Figure 2.

We next compute all drawdowns for the GCF , defined as periods over which Dt < 0

and define expansions as all other periods. During carry drawdowns, the average value of

the global recession indicator equals 0.33 versus 0.19 during carry expansions. To show

that these drawdowns are indeed shared among carry strategies in all nine asset classes,

Table VIII reports the mean and standard deviation of returns on the carry strategies in

each asset class separately over these expansion and drawdown periods. For all strategies

in all asset classes, the returns are consistently negative (positive) during carry drawdowns

(expansions). This implies that the extreme realizations, especially the negative ones, of

the global carry factor are not particular to a single asset class and that carry drawdowns

are bad periods for all carry strategies at the same time across all asset classes.

Moreover, Table VIII also includes the performance of the long-only passive portfolio

in each asset class during expansions and drawdowns. Especially on the downside, carry

returns suffer a great deal more than passive exposures to the asset classes themselves.

Among carry drawdowns, only half of the passive portfolios in the asset classes suffer

negative returns, while all carry strategies experience sharp negative performance. The

most extreme example being equity index put options, which during these global recessions

payoff a handsome 132% per annum, but a carry strategy on those same put options would

have returned −22%. Even for the asset classes that also experience negative passive

returns at these times (e.g., equities, commodities, currencies, credit), the performance of

carry strategies in these same asset classes is even worse during these times.

B.1 . Higher Frequency Movements within Drawdowns and Expansions

Table IX recomputes the monthly correlations of the carry strategies across all asset classes

during expansions and drawdowns separately. Consistent with the results in Table VIII

that the returns to carry seem to move together across all asset classes during drawdowns,

there is some evidence in Table IX that the correlations among carry strategies across asset

classes are stronger during these drawdown periods, particularly for the options, credit,

and currency strategies. However, the evidence is not overwhelming as many of the

correlations are close to zero and others not that different from expansions. However, the
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monthly correlations may be misleading due in part to the lower frequency comovement

of carry strategies with the business cycle and the fact that some asset classes respond

with different speeds to the business cycle.

To investigate this, Panel A of Table X reports the mean and standard deviation

of returns for each carry strategy separately during the first half and second half of

the drawdown periods and Panel B does the same during the expansion periods. For

this analysis we only look at carry drawdown and expansion periods that last at least

four months and divide each drawdown and expansion into two halves. As Panel A of

Table X shows, equity and fixed income carry strategies do most of their damage during

the first half of drawdowns, and then begin to recover in the second half. Commodities,

currencies, and credit do equally poorly throughout both halves of the drawdowns. Option

carry strategies, however, do fine during the first half of drawdowns but do miserably

during the second half. Hence, although all of these carry strategies do poorly over

the entire drawdown period, different asset classes’ carry strategies manifest their poor

performance over different points during the drawdowns. In this case, equities and bonds

suffer immediately, but recover quickly; commodities, credit, and currencies underperform

consistently throughout; and options lag in their response to these drawdowns.

This variation in response across asset classes is unique to drawdowns, however, as

Panel B of Table X, which examines performance of carry strategies over the first half

versus second half of expansions, does not yield a similar pattern. During expansions, we

see no differential response in terms of the signs of the carry strategy returns across

subperiods. Hence, an interesting avenue for further research is to understand why

drawdowns have this unique feature and why different asset classes respond with different

timing to the same negative global shocks.

B.2 . Static and Dynamic Risk Exposure in Drawdowns and Expansions

Finally, since a large component of the carry trade returns across all asset classes comes

from dynamic exposure, Table XI decomposes the returns to carry during both drawdowns

and expansions into their static and dynamic components (where the static exposure

continues to be computed using the full sample). A useful comparison here are the static

and dynamic decomposition numbers from Table V which computed its statistics over

the full sample. Several interesting results emerge. First, the breakdown between static

versus dynamic carry profits during expansions matches the breakdown in Table V for

the whole sample: equities, global bonds, and options being dominated by the dynamic

component; Treasuries, commodities, and currencies being split roughly evenly between

static and dynamic profits; and credit being split between about 2/3 static and 1/3
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dynamic returns.

For drawdowns, however, we get a different picture. Equities, for instance, which

during normal times or during expansions have most of their carry profits coming from

dynamic exposure, have only half of their negative drawdown returns coming from the

dynamic component. In other words, equity carry strategies receive all of their positive

returns from the dynamic component of carry strategies, but the negative realizations

and risk of these strategies is partly driven by static bets. This implies, for instance,

that half of the risk borne by equity carry strategies could potentially be hedged by

passive exposures. For global bond slopes and currencies we find a similar pattern, where

the dynamic component of these carry trades enjoys more of the updside returns and

contributes to less of the downside returns. However, for Treasuries and commodities

the opposite is true: the dynamic component of carry strategies in these asset classes

is exposed to more downside risk than upside. For global bond levels, credit, and the

options carry strategies there are no discernable differences in the breakdown between

static versus dynamic profits in drawdowns versus expansions.

These different patterns of static and dynamic risk exposure during drawdowns and

expansions may help identify better ways to profit from carry trades in general and may

help identify the economic drivers of the carry premium that is present across all of these

asset classes.

V. Conclusion: Caring about Carry

A security’s expected return can be decomposed into its “carry” and its expected price

appreciation, where carry can be measured in advance without an asset pricing model.

We find that carry predicts returns both in the cross section and time series for a host of

different asset classes that include global equities, global bonds, currencies, commodities,

US Treasuries, credit, and equity index options.

This predictability underlies the strong returns to “carry trades” that go long

high-carry and short low-carry securities, which have been applied almost exclusively

to currencies. Decomposing carry returns into static and dynamic components, we

investigate the nature of this predictability across asset classes. We also identify times

when carry strategies across all asset classes do poorly simultaneously and show that these

episodes coincide with global recessions and liquidity crises.

Our findings present a challenge to existing asset pricing theory. First, we show

that the concept of carry can be applied much more broadly to any asset class, not just

currencies, and that some aspects of currency carry trades that are prominent features of
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many models (e.g., negative skewness) are not present more generally across carry trades in

other asset classes. Second, carry can provide a unifying framework linking various return

predictors across asset classes that have been treated independently by the literature, thus

providing a connection between different asset classes not previously recognized. Hence,

theories seeking to explain return predictability in one asset class should be aware of

how those predictors might relate to other asset classes through carry. Third, we show

that carry is also a novel predictor of returns in these asset classes and in asset classes

not previously studied. Finally, we find that studying carry jointly across a variety of

asset classes raises the bar on carry’s performance (doubling its Sharpe ratio) as well as

identifies new common risks facing all carry strategies—which seem to coincide with global

economic downturns. Further investigating these links and how markets compensate these

risks across the asset classes we study is left for future research.
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Appendix

A Foreign-Denominated Futures

We briefly explain how we compute the US-dollar return and carry of a futures contract

that is denominated in foreign currency. Suppose that the exchange rate is et (measured

in number of local currency per unit of foreign currency), the local interest rate is rf , the

foreign interest rate is rf∗, the spot price is St, and the futures price is Ft, where both St

and Ft are measured in foreign currency.

Suppose that a U.S. investor allocates Xt dollars of capital to the position. This

capital is transferred into Xt/et in a foreign-denominated margin account. One time

period later, the investor’s foreign denominated capital is (1 + rf∗)Xt/et + Ft+1 − Ft so

that the dollar capital is et+1

(
(1 + rf∗)Xt/et + Ft+1 − Ft

)
. Assuming that the investor

hedges the currency exposure of the margin capital and that covered interest-rate parity

holds, the dollar capital is in fact (1 + rf )Xt + et+1(Ft+1 − Ft). Hence, the hedged dollar

return in excess of the local risk-free rate is

rt+1 =
et+1(Ft+1 − Ft)

Xt
. (A.1)

For a fully-collateralized futures with Xt = etFt, we have

rt+1 =
et+1(Ft+1 − Ft)

etFt

=
(et+1 − et + et)(Ft+1 − Ft)

etFt

=
Ft+1 − Ft

Ft
+

et+1 − et

et

Ft+1 − Ft

Ft
(A.2)

We compute the futures return using this exact formula, but we note that it is very similar

to the simpler expression (Ft+1−Ft)/Ft as this simpler version is off only by the last term

of (A.2) which is of second-order importance (as it is a product of returns).

We compute the carry of a foreign denominated futures as the return if the spot price

stays the same such that Ft+1 = St and if the exchange rate stays the same, et+1 = et.
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Using this together with equation (A.2), we see that the carry is19

Ct =
St − Ft

Ft
. (A.3)

B Data Sources

We describe below the data sources we use to construct our return series. Table I provides

summary statistics on our data, including sample period start dates.

Equities We use equity index futures data from 13 countries: the U.S. (S&P 500),

Canada (S&P TSE 60), the UK (FTSE 100), France (CAC), Germany (DAX), Spain

(IBEX), Italy (FTSE MIB), The Netherlands (EOE AEX), Sweden (OMX), Switzerland

(SMI), Japan (Nikkei), Hong Kong (Hang Seng), and Australia (S&P ASX 200). The data

source is Bloomberg. We collect data on spot, nearest-, and second-nearest-to-expiration

contracts to calculate the carry. Bloomberg tickers are reported in the table below.

The table reports the Bloomberg tickers that we use for equities. First and
second generic futures prices can be retrieved from Bloomberg by substituting
1 and 2 with the ‘x’ in the futures ticker. For instance, SP1 Index and SP2
Index are the first and second generic futures contracts for the S&P 500.

Market Spot ticker Futures ticker
US SPX Index SPx Index
Canada SPTSX60 Index PTx Index
UK UKX Index Zx Index
France CAC Index CFx Index
Germany DAX Index GXx Index
Spain IBEX Index IBx Index
Italy FTSEMIB Index STx Index
Netherlands AEX Index EOx Index
Sweden OMX Index QCx Index
Switzerland SMI Index SMx Index
Japan NKY Index NKx Index
Hong Kong HSI Index HIx Index
Australia AS51 Index XPx Index

We calculate daily returns for the most active equity futures contract (which is the

front-month contract), rolled 3 days prior to expiration, and aggregate the daily returns

19It is straightforward to compute the carry if the investor does not hedge the interest rate. In this
case, the carry is adjusted by a term r∗f − rf , where r∗f denotes the interest rate in the country of the
index and rf the US interest rate.
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to monthly returns. This procedure ensures that we do not interpolate prices to compute

returns.

We consider two additional robustness checks. First, we run all of our analyses

without the first trading day of the month to check for the impact of non-synchronous

settlement prices. Second, we omit the DAX index, which is a total return index, from

our calculations. Our results are robust to these changes.

Currencies The currency data consist of spot and one-month forward rates for 19

countries: Austria, Belgium, France, Germany, Ireland, Italy, The Netherlands, Portugal

and Spain (replaced with the euro from January 1999), Australia, Canada, Denmark,

Japan, New Zealand, Norway, Sweden, Switzerland, the United Kingdom, and the United

States. Our basic dataset is obtained from Barclays Bank International (BBI) prior to

1997:01 and WMR/Reuters thereafter and is similar to the data in Burnside, Eichenbaum,

Kleshchelski, and Rebelo (2011), Lustig, Roussanov, and Verdelhan (2011), and Menkhoff,

Sarno, Schmeling, and Schrimpf (2010). However, we verify and clean our quotes with

data obtained from HSBC, Thomson Reuters, and data from BBI and WMR/Reuters

sampled one day before and one day after the end of the month using the algorithm

described below.

The table below summarizes the Datastream tickers for our spot and one-month

forward exchange rates, both from BBI and WMR/Reuters. In addition, the last two

columns show the Bloomberg and Global Financial Data tickers for the interbank offered

rates.

At the start of our sample in 1983:10, there are 6 pairs available. All exchange rates

are available since 1997:01, and following the introduction of the euro there are 10 pairs

in the sample since 1999:01.

There appear to be several data errors in the basic data set. We use the following

algorithm to remove such errors. Our results do not strongly depend on removing these

outliers. For each currency and each date in our sample, we back out the implied foreign

interest rate using the spot- and forward exchange rate and the US 1-month LIBOR. We

subsequently compare the implied foreign interest rate with the interbank offered rate

obtained from Global Financial Data and Bloomberg. If the absolute difference between

the currency-implied rate and the IBOR rate is greater than a specified threshold, which

we set at 2%, we further investigate the quotes using data from our alternative sources.
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The table summarizes the Datastream tickers for our spot and one-month forward exchange rates, both from BBI and
WMR/Reuters. In addition, the last two columns show the Bloomberg and Global Financial Data tickers for the interbank
offered rates.

BBI-spot BBI-frwd WMR-spot WMR-frwd BB ibor GFD ibor
Austria - - AUSTSC$ USATS1F VIBO1M Index IBAUT1D
Belgium - - BELGLU$ USBEF1F BIBOR1M Index IBBEL1D
France BBFRFSP BBFRF1F FRENFR$ USFRF1F PIBOFF1M Index IBFRA1D
Germany BBDEMSP BBDEM1F DMARKE$ USDEM1F DM0001M Index IBDEU1D
Ireland - - IPUNTE$ USIEP1F DIBO01M Index IBIRL1D
Italy BBITLSP BBITL1F ITALIR$ USITL1F RIBORM1M Index IBITA1D
Netherlands BBNLGSP BBNLG1F GUILDE$ USNLG1F AIBO1M Index IBNLD1D
Portugal - - PORTES$ USPTE1F LIS21M Index IBPRT1D
Spain - - SPANPE$ USESP1F MIBOR01M Index IBESP1D
Euro BBEURSP BBEUR1F EUDOLLR USEUR1F EUR001M Index IBEUR1D
Australia BBAUDSP BBAUD1F AUSTDO$ USAUD1F AU0001M Index IBAUS1D
Canada BBCADSP BBCAD1F CNDOLL$ USCAD1F CD0001M Index IBCAN1D
Denmark BBDKKSP BBDKK1F DANISH$ USDKK1F CIBO01M Index IBDNK1D
Japan BBJPYSP BBJPY1F JAPAYE$ USJPY1F JY0001M Index IBJPN1D
New Zealand BBNZDSP BBNZD1F NZDOLL$ USNZD1F NZ0001M Index IBNZL1D
Norway BBNOKSP BBNOK1F NORKRO$ USNOK1F NIBOR1M Index IBNOR1D
Sweden BBSEKSP BBSEK1F SWEKRO$ USSEK1F STIB1M Index IBSWE1D
Switzerland BBCHFSP BBCHF1F SWISSF$ USCHF1F SF0001M Index IBCHE1D
UK BBGBPSP BBGBP1F USDOLLR USGBP1F BP0001M Index IBGBR1D
US - - - - US0001M Index IBUSA1D

Our algorithm can be summarized as follows:

• before (after) 1997:01, if data is available from WMR/Reuters (BBI) and the

absolute difference of the implied rate is below the threshold, replace the default

source BBI (WMR/Reuters) with WMR/Reuters (BBI)

– if data is available from WMR/Reuters (BBI) and the absolute difference

of the implied rate is also above the threshold, keep the default source BBI

(WMR/Reuters)

• else, if data is available from HSBC and the absolute difference of the implied rate

is below the threshold, replace the default source with HSBC

– if data is available from HSBC and the absolute difference of the implied rate

is also above the threshold, keep the default source

• else, if data is available from Thomson/Reuters and the absolute difference

of the implied rate is below the threshold, replace the default source with

Thomson/Reuters

– if data is available from Thomson/Reuters and the absolute difference of the

implied rate is also above the threshold, keep the default source
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If none of the other sources is available, we compare the end-of-month quotes with

quotes sampled one day before and one day after the end of the month and run the same

checks.

In cases where the interbank offered rate has a shorter history than our currency data,

we include the default data if the currency-implied rate is within the tolerance of the

currency-implied rate from any of the sources described above.

There are a few remaining cases, for example where the interbank offered rate is not

yet available, but the month-end quote is different from both the day immediately before

and after the end of the month. In these cases, we check whether the absolute difference

of the implied rates from these two observations is within the tolerance, and take the

observation one day before month-end if that is the case.

The figure below for Sweden illustrates the effects of our procedure by plotting the

actual interbank offered rate (“Libor BB”) with the currency-implied rate from the

original data (“Libor implied”) and the currency-implied rate after our data cleaning

algorithm has been applied (“Libor implied NEW”). Sweden serves as an illustration

only, and the impact for other countries is similar.
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Libor rates for Sweden. The figure shows the dynamics of three Libor rates: From Bloomberg (“Libor BB”),

the one implied by currency data (“Libor implied”), and the one implied by our corrected currency data (“Libor implied

NEW”).

Some of the extreme quotes from the original source are removed (for instance, October

1993), whereas other extremes are kept (like the observations in 1992 during the banking
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crisis).

Commodities Since there are no reliable spot prices for most commodities, we use the

nearest-, second-nearest, and third-nearest to expiration futures prices, downloaded from

Bloomberg.

Our commodities dataset consists of 24 commodities: six in energy (brent crude oil,

gasoil, WTI crude, RBOB gasoline, heating oil, and natural gas), eight in agriculture

(cotton, coffee, cocoa, sugar, soybeans, Kansas wheat, corn, and wheat), three in livestock

(lean hogs, feeder cattle, and live cattle) and seven in metals (gold, silver, aluminum,

nickel, lead, zinc, and copper).

Carry is calculated using nearest-, second-nearest, and third-nearest to expiration

contracts. We linearly interpolate the prices to a constant, one-month maturity. As

with equities, we only interpolate future prices to compute carry and not to compute the

returns on the actual strategies.

Industrial metals (traded on the London Metals Exchange, LME) are different from

the other contracts, since futures contracts can have daily expiration dates up to 3 months

out. Following LME market practice, we collect cash- and 3-month (constant maturity)

futures prices and interpolate between both prices to obtain the one-month future price.

We use the Goldman Sachs Commodity Index (GSCI) to calculate returns for all

commodities. Returns exclude the interest rate on the collateral (i.e., excess returns)

and the indices have exposure to nearby futures contracts, which are rolled to the next

contract month from the 5th to the 9th business day of the month.

The following table shows the tickers for the Goldman Sachs Excess Return indices,

generic futures contracts. LME spot and 3-month forward tickers are: LMAHDY and

LMAHDS03 (aluminum), LMNIDY and LMNIDS03 (nickel), LMPBDY and LMPBDS03

(lead), LMZSDY and LMZSDS03 (zinc) and LMCADY and LMCADS03 (copper).

40



First-, second-, and third generic futures prices can be retrieved from
Bloomberg by substituting 1, 2 and 3 with the ‘z’ in the futures ticker. For
instance, CO1 Comdty, CO2 Comdty, and CO3 Comdty are the first-, second-,
and third-generic futures contracts for crude oil.

GSCI ER Futures Ticker
Crude Oil SPGCBRP Index COx Comdty
Gasoil SPGCGOP Index QSx Comdty
WTI Crude SPGCCLP Index CLx Comdty
Unl. Gasoline SPGCHUP Index XBx Comdty
Heating Oil SPGCHOP Index HOx Comdty
Natural Gas SPGCNGP Index NGx Comdty
Cotton SPGCCTP Index CTx Comdty
Coffee SPGCKCP Index KCx Comdty
Cocoa SPGCCCP Index CCx Comdty
Sugar SPGCSBP Index SBx Comdty
Soybeans SPGCSOP Index Sx Comdty
Kansas Wheat SPGCKWP Index KWx Comdty
Corn SPGCCNP Index Cx Comdty
Wheat SPGCWHP Index Wx Comdty
Lean Hogs SPGCLHP Index LHx Comdty
Feeder Cattle SPGCFCP Index FCx Comdty
Live Cattle SPGCLCP Index LCx Comdty
Gold SPGCGCP Index GCx Comdty
Silver SPGCSIP Index SIx Comdty
Aluminum SPGCIAP Index -
Nickel SPGCIKP Index -
Lead SPGCILP Index -
Zinc SPGCIZP Index -
Copper SPGCICP Index -
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Fixed income Bond futures are only available for a very limited number of countries

and for a relatively short sample period. We therefore create synthetic futures returns

for 10 countries: the US, Australia, Canada, Germany, the UK, Japan, New Zealand,

Norway, Sweden, and Switzerland.

We collect constant maturity, zero coupon yields from two sources. For the period

up to and including May 2009 we use the zero coupon data available from the website of

Jonathan Wright, used initially in Wright (2011).20 From June 2009 onwards we use zero

coupon data from Bloomberg. Each month, we calculate the price of a synthetic future on

the 10-year zero coupon bond and the price of a bond with a remaining maturity of nine

years and 11 months (by linear interpolation). For countries where (liquid) bond futures

exist (US, Australia, Canada, Germany, the UK, and Japan), the correlations between

actual futures returns and our synthetic futures returns are in excess of 0.95.

The table below reports the Bloomberg tickers for the zero coupon yields and the

futures contracts (where available).

First and second generic futures prices can be retrieved from Bloomberg by substituting
1 and 2 with the ‘x’ in the futures ticker. For instance, TY1 Comdty and TY2 Comdty
are the first and second generic futures contracts for the US 10-year bond.

10y ZC Ticker 9y ZC Ticker Futures Ticker
US F08210y Index F08209Y Index TYx Comdty
Australia F12710y Index F12709Y Index XMx Comdty
Canada F10110y Index F10109Y Index CNx Comdty
Germany F91010y Index F91009Y Index RXx Comdty
UK F11010y Index F11009Y Index Gx Comdty
Japan F10510y Index F10509Y Index JBx Comdty
New Zealand F25010y Index F25009Y Index -
Norway F26610y Index F26609Y Index -
Sweden F25910y Index F25909Y Index -
Switzerland F25610y Index F25609Y Index -

Index Options and U.S. Treasuries The data sources for index options, alongside

the screens we use, and for U.S. Treasury returns and yields are discussed in the main

text.

C Results for Carry1-12

Reported below are results from Tables II and IV using the Carry1-12 measure, which

is a 12-month moving average of the carry of each security over the past t − 12 to t − 1

20http://econ.jhu.edu/directory/jonathan-wright/.
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months, to construct carry strategies in each asset class.

Repeat of Table II using Carry1-12 instead of the current
(last month’s) carry.

Asset class Mean Stdev Skewness Kurtosis Sharpe ratio

Equities 5.45 10.31 0.16 3.91 0.53

FI 10Y 3.11 6.81 -0.11 4.59 0.46

FI 10Y−2Y 2.14 5.35 -0.27 4.66 0.40

Treasuries 0.47 0.60 0.27 8.33 0.78

Commodities 12.69 19.40 -0.82 5.70 0.65

Currencies 4.25 7.71 -0.96 6.08 0.55

Credit 0.27 0.58 -0.06 21.19 0.46

Options calls 32.23 125.31 -1.68 11.82 0.26

Options puts 40.48 80.50 0.49 12.00 0.50

Repeat of Table IV using Carry1-12 instead of the current (last month’s)
carry.

Equities global FI Level FI Slope Treasuries Commodities

α 0.44 0.32 0.27 0.26 0.21 0.19 0.03 0.02 1.06 0.78
( 2.51 ) ( 1.74 ) ( 2.42 ) ( 2.56 ) ( 2.52 ) ( 2.37 ) ( 4.10 ) ( 3.16 ) ( 3.76 ) ( 3.12 )

Passive long 0.04 0.02 -0.02 -0.10 -0.09 -0.23 0.11 0.08 -0.04 -0.06
( 0.76 ) ( 0.51 ) ( -0.21 ) ( -1.18 ) ( -1.28 ) ( -3.02 ) ( 2.06 ) ( 2.29 ) ( -0.39 ) ( -0.66 )

Value 0.33 -0.13 -0.15 0.00 -0.26
( 4.30 ) ( -1.18 ) ( -2.09 ) ( -0.39 ) ( -4.70 )

Momentum 0.10 0.52 0.29 0.00 0.37
( 1.34 ) ( 4.44 ) ( 3.77 ) ( -0.34 ) ( 5.64 )

TSMOM 0.01 0.00 0.03 0.00 -0.10
( 0.33 ) ( 0.24 ) ( 1.88 ) ( 0.21 ) ( -1.11 )

R2 0.00 0.07 0.00 0.16 0.01 0.14 0.05 0.03 0.00 0.29
IR 0.51 0.38 0.47 0.52 0.47 0.48 0.66 0.70 0.66 0.60

FX Credits Calls Puts GCF

α 0.32 0.26 0.02 0.02 2.08 0.83 2.01 3.41
( 2.58 ) ( 1.99 ) ( 2.97 ) ( 1.75 ) ( 0.77 ) ( 0.26 ) ( 0.93 ) ( 1.51 )

Passive long 0.16 0.20 -0.02 0.15 -0.10 -0.11 -0.05 -0.05
( 2.14 ) ( 2.96 ) ( -0.33 ) ( 1.98 ) ( -2.66 ) ( -2.70 ) ( -2.00 ) ( -1.99 )

Value 0.04 0.01 2.68 -2.20
( 0.30 ) ( 0.88 ) ( 0.71 ) ( -1.05 )

Momentum 0.03 0.00 -1.44 -0.47
( 0.24 ) ( -0.16 ) ( -0.88 ) ( -0.31 )

TSMOM 0.00 -0.01 0.89 -0.52
( 0.07 ) ( -1.48 ) ( 1.02 ) ( -0.82 )

R2 0.03 0.04 0.00 0.07 0.06 0.10 0.04 0.06
IR 0.50 0.40 0.47 0.40 0.20 0.08 0.30 0.52
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D Equity Carry versus Dividend Yield

To construct the dividend yield for the US, we use the standard CRSP value-weighted

index that includes all stocks on AMEX, Nasdaq, and NYSE. We construct the dividend

yield as the sum of 12 months of dividends, divided by the current index level following

Fama and French (1988).21 To construct a long time series of carry, we make the following

assumptions. First, we measure rf
t by the 30-day T-bill rate. Second, we approximate

Dt+1 = EQ
t (Dt+1). As most firms announce dividends one to three months in advance,

index level dividends are highly predictable one month ahead. This implies that we

measure Ct ' Dt+1/St − rf
t . The time series of the dividend yield and equity carry cover

the period January 1945 to December 2012.

Comparing carry to the dividend yield, at least three aspects are worth mentioning.

First, the average short rate is about the same as the average dividend yield. This implies

that the average carry equals −7bp during our sample period, while the average dividend

yield equals 3.36%. Second, carry displays important seasonal variation as a result of

the payout behavior of firms that is concentrated in several months. The importance of

seasonalities declines substantially over time. Third, the variation in the interest rate

can contribute substantially to the variation in the equity carry. For instance, during

episodes of high interest rates, like for instance in the 1980s, these two series move in

opposite directions.

The time series correlation between the dividend yield and the carry is only 0.30. This

low correlation arises for two reasons. First, we subtract (and average) the one-month

interest rate. Second, and more subtle, we average Dt+1/Pt over 12 months. For the

dividend yield, by contrast, we sum 12 months of dividends and divide by the current

price, DPt =
∑11

s=0 Dt−s/Pt. This implies that the carry signal smoothes both prices and

dividends, while in case of the dividend yield, only the dividends are smoothed.

We then examine to what extent sorting on carry versus sorting on dividend yield

produces different portfolios. We collect cash returns from Bloomberg and construct the

dividend yield for the cross-section of countries we consider as described above. The

sample for which Bloomberg reports cash returns is smaller than the sample for which we

can compute the carry. To ensure comparability, we only look at contracts for which both

the carry and the dividend yield are available. The table below reports the results from

the various strategies, which includes the mean return, standard deviation, skewness, and

Sharpe ratio of the various strategies. While both carry and dividend yield strategies

21Binsbergen and Koijen (2010) show that dividend yield dynamics are very similar if instead of simply
summing the monthly dividends, the dividends are invested at the 30-day T-bill rate.
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produce positive Sharpe ratios, the correlation between the carry and the dividend yield

strategy is only 0.07 and between carry1-12 and dividend yield strategies is only 0.29. At

the bottom of the table we also report results from regressing each of the carry strategies

on the dividend yield strategy. The betas are low and the alphas remain large and

significant.

Comparing the Equity Carry vs. the Dividend Yield. The
top panel reports the summary statistics of three strategies using either the
current carry, the carry1-12, or the dividend yield as the signal.

Current carry Carry1-12 Dividend yield

Mean 0.75 0.30 0.46
Stdev 3.02 3.14 3.17
Skewness 0.25 -0.35 0.06
SR 0.87 0.33 0.50

Correlation matrix Current carry Carry1-12 Dividend yield

Current carry 1.00 0.41 0.07
Carry1-12 1.00 0.29
Dividend yield 1.00

Current carry Carry1-12
alpha 8.70 2.03
beta 0.07 0.28
IR 0.83 0.19
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Tables

Table I: Summary Statistics

This table lists all the instruments that we use in our analysis, and reports summary statistics on the beginning date for which
the returns and carry are available for each instrument, as well as the annualized mean and standard deviation of the return
and the carry for each instrument. Panel A contains the instruments for equities, commodities, currencies, and fixed income,
and Panel B contains fixed income slope (10-year − 2-year bonds), US Treasuries, US credit portfolios, and US equity index
options, separated by calls and puts and averaged across delta groups.

Panel A: Equities, Commodities, Currencies, and Fixed Income

Instrument Begin Return Carry Instrument Begin Return Carry
sample mean stdev mean stdev sample mean stdev mean stdev

Equities Commodities
US Mar-88 6.0 14.9 -1.4 0.7 Crude Oil Feb-99 21.1 32.0 0.8 5.4
SPTSX60 Oct-99 5.7 15.8 -0.7 0.8 Gasoil Feb-99 20.7 32.9 2.7 5.3
UK Mar-88 3.6 15.1 -1.6 1.4 WTI Crude Feb-87 11.6 33.5 1.5 7.0
France Jan-89 3.4 19.6 -0.5 1.9 Unl. Gasoline Nov-05 12.6 36.2 -2.1 9.8
Germany Dec-90 6.3 21.5 -3.4 1.1 Heating Oil Aug-86 12.2 32.8 -0.3 8.3
Spain Aug-92 8.2 22.0 1.7 2.1 Natural Gas Feb-94 -16.6 53.6 -26.6 21.3
Italy Apr-04 -1.4 21.1 1.4 1.5 Cotton Feb-80 0.4 25.2 -3.8 7.2
Netherlands Feb-89 5.6 19.8 0.2 1.5 Coffee Feb-81 2.5 37.7 -4.8 5.0
Sweden Mar-05 8.5 19.0 1.3 2.2 Cocoa Feb-84 -3.9 29.2 -6.5 3.4
Switzerland Nov-91 3.3 16.0 0.2 1.2 Sugar Feb-80 0.9 39.4 -2.8 6.1
Japan Oct-88 -3.5 22.1 -0.4 1.6 Soybeans Feb-80 2.8 23.7 -2.4 5.6
Hong Kong May-92 10.8 27.8 1.4 2.2 Kansas Wheat Feb-99 1.1 29.5 -8.7 3.2
Australia Jun-00 3.7 13.2 0.9 1.0 Corn Feb-80 -3.3 25.8 -10.2 5.3

Wheat Feb-80 -5.0 25.2 -8.5 5.7
Currencies Lean Hogs Jun-86 -3.2 24.5 -14.3 19.8
Australia Jan-85 4.7 12.1 3.2 0.8 Feeder Cattle Feb-02 2.2 15.5 -1.6 4.6
Austria Feb-97 -2.6 8.7 -2.1 0.0 Live Cattle Feb-80 2.2 14.1 -0.2 6.1
Belgium Feb-97 -2.7 8.7 -2.1 0.1 Gold Feb-80 -0.8 17.6 -5.3 1.1
Canada Jan-85 2.1 7.2 0.8 0.5 Silver Feb-80 -0.8 31.3 -6.1 1.8
Denmark Jan-85 3.9 11.1 0.9 0.9 Aluminum Feb-91 -2.3 19.3 -5.0 1.5
Euro Feb-99 1.2 10.8 -0.3 0.4 Nickel Mar-93 11.6 35.6 0.4 2.5
France Nov-83 4.6 11.2 1.6 0.9 Lead Mar-95 10.4 29.7 -0.7 2.7
Germany Nov-83 2.8 11.7 -0.9 0.9 Zinc Mar-91 0.9 25.8 -4.7 2.0
Ireland Feb-97 -2.5 8.9 0.5 0.2 Copper May-86 15.3 28.1 4.3 3.4
Italy Apr-84 5.1 11.1 4.3 0.8
Japan Nov-83 1.7 11.4 -2.7 0.7 Fixed income
Netherlands Nov-83 3.0 11.6 -0.7 0.9 Australia Mar-87 5.6 11.2 0.8 0.6
New Zealand Jan-85 7.0 12.6 4.3 1.2 Canada Jun-90 6.6 8.8 2.3 0.5
Norway Jan-85 4.3 11.1 2.3 0.9 Germany Nov-83 4.7 7.5 2.1 0.5
Portugal Feb-97 -2.3 8.4 -0.6 0.2 UK Nov-83 3.9 10.2 0.1 0.8
Spain Feb-97 -1.5 8.5 -0.7 0.2 Japan Feb-85 4.5 7.4 2.0 0.4
Sweden Jan-85 3.3 11.5 1.7 0.9 New Zealand Jul-03 3.3 8.6 0.7 0.8
Switzerland Nov-83 1.9 12.1 -1.9 0.7 Norway Feb-98 3.9 9.0 0.9 0.5
UK Nov-83 2.8 10.4 2.0 0.6 Sweden Jan-93 6.1 9.3 1.7 0.4
US Nov-83 0.0 0.0 0.0 0.0 Switzerland Feb-88 3.0 6.0 1.5 0.6

US Nov-83 6.3 10.8 2.5 0.6
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Panel B: Fixed Income slope, US Treasuries, Credit, and Equity Index Options

Instrument Begin Return Carry
sample mean stdev mean stdev

Fixed income, 10y-2y slope
Australia Mar-87 4.5 9.5 0.6 0.3
Canada Jun-90 4.7 7.2 1.4 0.3
Germany Nov-83 3.6 6.5 1.4 0.4
UK Nov-83 3.4 8.5 0.3 0.5
Japan Feb-85 3.8 6.4 1.7 0.3
New Zealand Jul-03 3.1 7.8 0.9 0.4
Norway Feb-98 3.5 6.9 1.0 0.3
Sweden Jan-93 4.7 8.0 1.1 0.2
Switzerland Feb-88 2.6 5.1 1.4 0.3
US Nov-83 4.9 9.2 1.7 0.4
US Treasuries
10Y Aug-71 1.2 1.6 1.2 0.4
7Y Aug-71 0.8 1.5 0.7 0.2
5Y Aug-71 0.7 1.4 0.6 0.2
3Y Aug-71 0.6 1.2 0.5 0.1
2Y Aug-71 0.5 1.1 0.4 0.1
1Y Aug-71 0.4 0.9 0.3 0.1
Credits, US
A, Intermediate Feb-73 0.4 1.3 0.4 0.1
AA, Intermediate Feb-73 0.4 1.2 0.3 0.1
AAA, Intermediate Feb-73 0.4 1.3 0.3 0.1
BAA, Intermediate Feb-73 0.6 1.3 0.5 0.1
A, Long Feb-73 0.3 1.0 0.3 0.1
AA, Long Feb-73 0.3 1.0 0.2 0.1
AAA, Long Feb-73 0.2 1.0 0.2 0.1
BAA, Long Feb-73 0.4 1.1 0.3 0.1
Call options (average across delta groups)
DJ Industrial Average Oct-97 -138.5 332.7 -689.4 56.9
S&P Midcap 400 Mar-97 -52.8 370.0 -774.0 57.0
Mini-NDX Sep-00 11.3 391.3 -708.3 53.3
NASDAQ 100 Jan-96 51.4 422.2 -737.3 57.7
S&P 100 Jan-96 -138.2 326.2 -716.3 59.1
Russell 2000 Jan-96 -84.4 367.5 -701.2 56.7
S&P Smallcap 600 May-05 -446.1 155.2 -746.2 63.6
S&P 500 Jan-96 -152.8 302.1 -713.8 58.2
AMEX Major Market Jan-96 119.3 452.1 -680.6 46.2
Put options (average across delta groups)
DJ Industrial Average Oct-97 -320.6 305.4 -593.0 45.7
S&P Midcap 400 Jan-96 -828.7 117.9 -518.8 64.1
Mini-NDX Aug-00 -218.8 362.2 -585.0 47.1
NASDAQ 100 Jan-96 -284.7 338.5 -592.1 50.7
S&P 100 Jan-96 -309.3 315.7 -598.8 47.4
Russell 2000 Feb-96 -283.4 318.6 -595.5 48.9
S&P Smallcap 600 Feb-04 -807.9 59.5 -537.6 53.3
S&P 500 Jan-96 -323.1 300.9 -580.6 47.2
AMEX Major Market Jan-96 -572.2 158.8 -521.5 47.6
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Table II: The Returns to Global Carry Strategies

Panel A reports for each asset class, the mean, standard deviation, skewness, kurtosis, and Sharpe ratio of the
long/short carry trades as well as passive equal-weighted (EW) exposures in each asset class. These statistics are also
reported for a diversified portfolio of all carry trades across all asset classes, which we call the “global carry factor,”
where each asset class is weighted by the inverse of its full sample volatility (standard deviation of returns) estimate.
An equal-weighted passive exposure to all asset classes is computed similarly by equal-weighting all securities within
an asset class and then weighting each asset class by the inverse of its volatility in the “all asset classes” row. Panel
B reports results for carry trades conducted at a much coarser level by first grouping securities by region or broader
asset class and then generating a carry trade. For equities, fixed income, and currencies we group all index futures
into one of five regions: North America, UK, continental Europe, Asia, and New Zealand/Australia and compute the
equal-weighted average carry and equal-weighted average returns of these five regions. For commodities we group
instruments into three categories: agriculture/livestock, metals, and energy. We then create carry trade portfolios
using only these regional/group portfolios. Credit, US Treasuries, and options are excluded from Panel B.

Panel A: Carry Trades by security within an Asset Class

Asset class Strategy Mean Stdev Skewness Kurtosis Sharpe ratio

Global equities Carry 9.14 10.42 0.22 4.74 0.88
EW 5.00 15.72 -0.63 3.91 0.32

Fixed income 10Y global Carry 3.85 7.45 -0.43 6.66 0.52
EW 5.04 6.85 -0.11 3.70 0.74

Fixed income 10Y−2Y global Carry 3.77 5.72 -0.22 5.49 0.66
EW 4.04 5.73 -0.05 3.67 0.71

US Treasuries Carry 0.46 0.67 0.47 10.46 0.68
EW 0.69 1.22 0.58 12.38 0.57

Commodities Carry 11.22 18.78 -0.40 4.55 0.60
EW 1.05 13.45 -0.71 6.32 0.08

Currencies Carry 5.29 7.80 -0.68 4.46 0.68
EW 2.88 8.10 -0.16 3.44 0.36

Credit Carry 0.24 0.52 1.32 18.19 0.47
EW 0.37 1.09 -0.03 7.09 0.34

Options calls Carry 64 172 -2.82 14.49 0.37
EW -73 313 1.15 3.88 -0.23

Options puts Carry 179 99 -1.75 10.12 1.80
EW -299 296 1.94 7.11 -1.01

All asset classes (global carry factor) Carry 6.75 6.12 -0.02 5.24 1.10
EW 3.46 7.34 -0.38 7.94 0.47
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Panel B: Carry Trades by Region/Group within an Asset Class

Asset Class Strategy Mean Stdev Skewness Kurtosis Sharpe ratio

Global equities Carry 5.93 10.93 0.45 4.29 0.54
EW 4.73 14.68 -0.65 3.93 0.32

Fixed income 10Y Carry 3.74 8.51 -0.37 5.21 0.44
EW 5.10 6.92 -0.07 3.69 0.74

Fixed income 10Y−2Y Carry 4.05 6.89 0.13 4.35 0.59
EW 4.12 5.80 -0.02 3.64 0.71

Commodities Carry 14.97 31.00 -0.04 4.93 0.48
EW 1.37 16.15 -0.56 5.86 0.09

Currencies Carry 4.76 10.73 -1.00 5.31 0.44
EW 2.68 7.00 -0.05 3.34 0.38

Table III: Correlation of Global Carry Strategies

Panel A reports the monthly return correlations between carry strategies for each asset class where carry trades are
performed using individual securities within each asset class. Panel B reports monthly correlations for carry trades
across asset classes performed using the regional/group level portfolios.

Panel A: Correlations of Carry Trade Returns by security within an Asset Class

EQ FI 10Y FI 10Y−2Y Treasuries COMM FX Credit Calls Puts
EQ 1.00 0.17 0.13 0.07 -0.02 0.05 0.06 0.11 -0.09
FI 10Y 1.00 0.66 0.09 0.05 0.15 -0.02 -0.07 0.06
FI 10Y−2Y 1.00 0.11 0.08 0.14 -0.08 0.00 0.09
Treasuries 1.00 0.12 -0.05 0.12 0.08 -0.06
COMM 1.00 0.02 0.04 -0.15 0.08
FX 1.00 0.21 -0.14 0.11
Credit 1.00 -0.04 0.09
Calls 1.00 0.15
Puts 1.00

Panel B: Correlation of Carry Trade Returns by Region/Group within an Asset Class

EQ FI 10Y FI 10Y−2Y COMM FX

EQ 1.00 0.16 0.10 -0.02 0.06
FI 10Y 1.00 0.64 -0.01 0.04
FI 10Y−2Y 1.00 0.03 0.13
COMM 1.00 -0.02
FX 1.00
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Table IV: Carry Trade Exposures to Other Factors
The table reports regression results for each carry portfolio’s returns in each asset class on a set of other portfolio returns or
factors that have been shown to explain the cross-section of asset returns: the passive long portfolio returns (equal-weighted
average of all securities) in each asset class, the value and momentum asset class-specific factors of Asness, Moskowitz, and
Pedersen (2012), and the time-series momentum (TSMOM) factor of Moskowitz, Ooi, and Pedersen (2012), where these latter
factors are computed for each asset class separately for equities, fixed income, commodities, and currencies. For fixed income
slope and Treasuries, we use the fixed income factors and for the credit and options strategies we use the global-across-all-
asset-class diversified value and momentum “everywhere” factors of Asness, Moskowitz, and Pedersen (2012) (which includes
individual equity strategies, too) and the globally diversified across all asset classes TSMOM factor of Moskowitz, Ooi, and
Pedersen (2012). Panel A reports both the intercepts or alphas (in percent) from these regressions as well as the betas on the
various factors for the carry strategies that on individual securities within each asset class. Panel B reports the same for the
regional/group level portfolios within each asset class. The last two columns of Panel A report regression results for the global
carry factor, GCF , on the all-asset-class market, value, momentum, and TSMOM factors. The last two rows report the R2

from the regression and the information ratio, IR, which is the alpha divided by the residual volatility from the regression.
Panel B reports results of the same regressions for the regional/group carry strategies. All t-statistics are in parentheses.

Panel A: by security within an Asset Class

Equities global FI Level FI Slope Treasuries Commodities

α 0.79 0.77 0.35 0.33 0.34 0.29 0.03 0.02 0.93 0.64
( 4.51 ) ( 4.51 ) ( 3.06 ) ( 3.08 ) ( 4.00 ) ( 3.63 ) ( 3.38 ) ( 2.74 ) ( 3.43 ) ( 2.57 )

Passive long -0.06 -0.06 -0.07 -0.18 -0.07 -0.23 0.16 0.12 0.01 -0.02
( -1.10 ) ( -1.16 ) ( -0.94 ) ( -2.10 ) ( -0.91 ) ( -3.03 ) ( 2.57 ) ( 3.51 ) ( 0.12 ) ( -0.31 )

Value 0.17 0.07 0.07 0.00 -0.21
( 1.84 ) ( 0.51 ) ( 0.64 ) ( -0.67 ) ( -2.96 )

Momentum 0.06 0.56 0.43 0.00 0.29
( 0.74 ) ( 4.26 ) ( 4.37 ) ( 0.04 ) ( 3.81 )

TSMOM -0.04 0.03 0.04 0.00 -0.04
( -1.69 ) ( 1.82 ) ( 3.12 ) ( 0.80 ) ( -0.45 )

R2 0.01 0.03 0.00 0.16 0.00 0.20 0.08 0.07 0.00 0.20
IR 0.91 0.90 0.57 0.61 0.71 0.70 0.54 0.64 0.60 0.47

FX Credits Calls Puts GCF

α 0.40 0.30 0.02 0.02 3.21 6.93 13.02 12.55 0.53 0.44
( 3.31 ) ( 2.31 ) ( 2.85 ) ( 1.70 ) ( 1.07 ) ( 2.15 ) ( 4.74 ) ( 4.55 ) ( 6.52 ) ( 5.51 )

Passive long 0.17 0.22 0.02 0.14 -0.34 -0.35 -0.08 -0.09 0.10 0.14
( 2.47 ) ( 3.46 ) ( 0.50 ) ( 2.31 ) ( -5.90 ) ( -6.07 ) ( -1.85 ) ( -2.10 ) ( 1.34 ) ( 1.78 )

Value 0.11 0.01 -5.96 2.82 0.08
( 1.08 ) ( 0.81 ) ( -2.14 ) ( 0.98 ) ( 1.00 )

Momentum 0.03 0.00 -4.32 2.14 0.10
( 0.31 ) ( -0.21 ) ( -2.54 ) ( 1.01 ) ( 1.45 )

TSMOM 0.01 0.00 -0.92 -0.77 -0.01
( 0.25 ) ( -1.42 ) ( -1.00 ) ( -1.07 ) ( -0.22 )

R2 0.03 0.05 0.00 0.07 0.39 0.43 0.05 0.07 0.02 0.04
IR 0.63 0.47 0.45 0.39 0.29 0.64 1.61 1.56 1.05 1.24

Panel B: by region/group within an Asset Class

Equities global FI Level FI Slope Commodities FX

α 0.51 0.50 0.36 0.38 0.39 0.34 1.24 0.77 0.33 0.25
( 2.73 ) ( 2.51 ) ( 2.70 ) ( 2.76 ) ( 3.63 ) ( 3.17 ) ( 2.76 ) ( 1.74 ) ( 1.96 ) ( 1.40 )

Passive long -0.03 -0.03 -0.12 -0.05 -0.15 -0.12 0.11 0.01 0.31 0.37
( -0.61 ) ( -0.57 ) ( -1.43 ) ( -0.64 ) ( -1.76 ) ( -1.35 ) ( 0.71 ) ( 0.08 ) ( 2.68 ) ( 3.14 )

Value 0.10 0.16 0.14 0.12 0.10
( 1.05 ) ( 1.36 ) ( 1.56 ) ( 0.88 ) ( 0.63 )

Momentum 0.06 0.14 -0.03 0.62 0.04
( 0.67 ) ( 1.09 ) ( -0.30 ) ( 3.62 ) ( 0.28 )

TSMOM -0.03 -0.02 0.01 -0.03 0.00
( -1.18 ) ( -1.49 ) ( 0.70 ) ( -0.17 ) ( 0.02 )

R2 0.00 0.01 0.01 0.02 0.02 0.02 0.00 0.13 0.04 0.05
IR 0.56 0.54 0.51 0.56 0.68 0.61 0.48 0.32 0.37 0.29
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Table V: Decomposing Carry Trade Returns into Static and Dynamic Components.

The table reports the results of the static and dynamic decomposition according to equation (27).

Individual securities Static Dynamic % Dynamic

Equities global -0.1% 9.3% 101%
Fixed income - 10Y global 0.6% 3.3% 86%
Fixed income - 10Y−2Y global 0.1% 3.7% 99%
US Treasuries 0.3% 0.2% 42%
Commodities 4.1% 7.1% 64%
Currencies 2.2% 3.1% 58%
Credit 0.2% 0.1% 30%
Options calls -7.2% 70.8% 111%
Options puts -0.4% 179.3% 100%

Regions and groups Static Dynamic % Dynamic

Equities global -0.6% 6.6% 111%
Fixed income - 10Y global 0.5% 3.3% 87%
Fixed income - 10Y−2Y global 0.2% 3.9% 96%
Commodities -0.4% 15.4% 103%
Currencies 2.3% 2.4% 51%
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Table VI: How Does Carry Predict Returns?

The table reports the results from the panel regressions of equation (28) for each asset class with and without asset/instrument and time fixed effects, repeated here:

ri
t+1 = ai + bt + cCi

t + εi
t+1,

where ai is an asset-specific intercept (or fixed effect), bt are time fixed effects, Ci
t is the carry on asset i at time t, and c is the coefficient of interest that measures how well

carry predicts returns. Without asset and time fixed effects, c represents the total predictability of returns from carry from both its passive and dynamic components. Including
time fixed effects removes the time-series predictable return component coming from general exposure to assets at a given point in time. Similarly, including asset-specific fixed
effects removes the predictable return component of carry coming from passive exposure to assets with different unconditional average returns. By including both asset and
time fixed effects, the slope coefficient c in equation (28) represents the predictability of returns to carry coming purely from variation in carry. Coefficient estimates, c and
their associated t-statistics from the regressions are reported below.

Strategy Contract FE Time FE Coefficient, c t-statistic Strategy Contract FE Time FE Coefficient, c t-statistic

Equities global X X 1.14 4.15 Currencies X X 1.09 2.69
X 1.27 2.87 X 1.60 2.69

X 1.08 4.00 X 0.82 3.00
1.21 2.85 1.28 3.23

FI, 10Y global X X 1.44 3.08 Credit X X 1.46 2.01
X 1.56 3.09 X 2.19 2.82

X 1.19 2.97 X 1.20 2.57
1.47 3.24 2.07 2.97

FI, 10-2Y global X X 2.51 3.72 Options, calls X X 0.16 1.45
X 2.38 2.94 X -0.04 -0.20

X 1.79 3.47 X 0.15 1.35
2.08 3.00 -0.05 -0.25

US Treasuries X X 0.45 2.65 Options, puts X X 0.54 7.12
X 0.60 1.68 X 0.78 3.35

X 0.59 4.27 X 0.54 7.09
0.64 2.14 0.77 3.38

Commodities X X 0.01 0.13
X 0.01 0.13

X 0.07 0.87
0.06 0.79
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Table VII: Carry Timing Strategies

The table reports results for pure timing strategies on each asset using carry and ignoring any cross-sectional information from carry. Specifically, for every
security we long if the carry is positive and short if it is negative. We do this for every security within an asset class and then take the equal-weighted
average of these timing strategy returns based on carry across all securities within an asset class. Panel A reports the results for each asset class as well as
for the regional/group level portfolios. Panel B repeats the timing exercise, but where we go long (short) a security if its carry is above (below) its rolling
sample mean over the last five years.

Panel A: Timing Relative to Zero Panel B: Timing Relative to Rolling Mean
Individual securities mean stdev skewness kurtosis Sharpe ratio mean stdev skewness kurtosis Sharpe ratio

Equities 7.40 18.55 0.39 4.49 0.40 12.15 16.91 0.10 4.97 0.72

FI global, 10Y 7.09 10.93 -0.16 4.05 0.65 6.82 9.89 -0.11 4.56 0.69

FI global, 10Y−2Y 6.90 9.62 -0.15 4.29 0.72 4.97 8.63 -0.13 5.00 0.58

Treasuries 1.36 2.28 -0.48 14.51 0.60 0.59 1.93 -1.26 22.34 0.31

Commodities 8.28 20.78 0.13 5.56 0.40 12.20 16.24 -0.34 3.57 0.75

Currencies 7.86 10.08 -0.72 5.63 0.78 5.04 9.50 -0.50 4.35 0.53

Credit 1.27 2.00 -0.24 8.00 0.64 1.15 1.95 -0.30 8.69 0.59

Options calls 146.45 626.92 -1.15 3.88 0.23 -35.66 264.00 -2.12 13.35 -0.14

Options puts 597.76 592.72 -1.94 7.11 1.01 233.12 244.04 2.61 22.49 0.96

Regions/groups mean stdev skewness kurtosis Sharpe ratio mean stdev skewness kurtosis Sharpe ratio

Equities 4.81 21.53 0.65 5.90 0.22 10.12 20.69 -0.11 4.00 0.49

FI global, 10Y 6.78 11.38 -0.10 3.72 0.60 7.67 10.84 -0.02 4.08 0.71

FI global, 10Y−2Y 7.21 9.70 -0.14 4.23 0.74 5.51 9.21 -0.07 4.63 0.60

Commodities 7.47 31.22 0.45 6.36 0.24 14.02 28.53 0.60 7.28 0.49

Currencies 8.26 10.48 -0.68 4.72 0.79 4.88 9.28 -0.29 3.90 0.53
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Table VIII: The Returns to Carry Strategies Across Asset Classes During Carry Drawdowns

and Expansions.

The table reports the annualized mean and standard deviation of returns to carry strategies and to the equal-weighted
index of all securities within each asset class during carry “expansions” and “drawdowns”, where carry “drawdowns”
are defined as periods where the cumulative return to carry strategies is negative, defined as follows

Dt ≡
t

X

s=1

rs − max
u∈{1,...,t}

u
X

s=1

rs,

where rs denotes the return on the global carry factor for all periods over which Dt < 0. Carry “expansions” are
defined as all other periods.

Carry expansions Carry drawdowns

Asset class Strategy Mean Stdev Mean Stdev

Equities Carry 15.03 9.71 -6.15 10.95
EW 8.31 13.73 -3.62 19.87

FI global, 10Y Carry 10.84 6.19 -13.90 7.93
EW 3.75 6.53 8.33 7.55

FI global, 10Y−2Y Carry 8.10 5.10 -7.25 5.98
EW 2.94 5.45 6.85 6.34

Treasuries Carry 0.97 0.64 -0.57 0.65
EW 0.98 1.14 0.10 1.34

Commodities Carry 21.49 17.33 -13.23 20.24
EW 4.54 11.73 -7.24 16.68

Currencies Carry 10.06 7.29 -6.81 8.00
EW 5.17 7.68 -2.95 8.89

Credit Carry 0.60 0.52 -0.50 0.45
EW 0.84 1.03 -0.61 1.15

Options calls Carry 152 138 -161 225
EW 195 272 -237 389

Options puts Carry 258 77 -22 124
EW 364 238 132 409
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Table IX: Correlation of Carry Strategies During Expansions and Drawdowns

Panel A reports the monthly return correlations between carry strategies for each asset class during carry expansions
and Panel B reports monthly correlations for carry returns during carry drawdowns. Bold indicates significantly
different correlation estimates between expansions and drawdowns.

Panel A: Correlations of Carry Trade Returns during expansions

EQ FI 10Y FI 10Y−2Y Treasuries COMM FX Credit Calls Puts

EQ 1.00 0.10 0.03 0.03 -0.08 -0.03 0.02 0.02 -0.07

FI 10Y 1.00 0.60 0.04 -0.03 0.06 -0.14 -0.11 0.02

FI 10Y−2Y 1.00 0.09 0.00 0.08 -0.19 -0.10 -0.01
Treasuries 1.00 0.10 -0.08 0.04 0.00 0.02

COMM 1.00 -0.05 0.00 -0.19 -0.02
FX 1.00 0.03 -0.13 -0.21

Credit 1.00 -0.06 -0.14

Calls 1.00 0.07
Puts 1.00

Panel B: Correlation of Carry Trade Returns during drawdowns

EQ FI 10Y FI 10Y−2Y Treasuries COMM FX Credit Calls Puts
EQ 1.00 0.04 0.06 0.01 -0.04 -0.07 -0.09 0.09 -0.41

FI 10Y 1.00 0.61 -0.07 -0.07 -0.03 -0.18 -0.26 -0.19

FI 10Y−2Y 1.00 -0.08 0.03 -0.01 -0.19 -0.08 -0.11
Treasuries 1.00 0.00 -0.20 0.02 0.07 -0.37

COMM 1.00 -0.02 -0.10 -0.28 0.03
FX 1.00 0.48 -0.38 0.27

Credit 1.00 -0.19 0.36

Calls 1.00 0.08
Puts 1.00
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Table X: Higher Frequency Movements within Carry Drawdowns and Expansions.

The table reports the annualized mean and standard deviation of returns to carry strategies for each asset class during
the first and second half of carry “drawdowns” (Panel A) and “expansion” (Panel B), separately. For this analysis
we only look at carry drawdown and expansion periods that last at least four months and divide each drawdown and
expansion into two halves.

1st half 2nd half

Asset class Strategy Mean Stdev Mean Stdev

Panel A: Carry Drawdowns

Equities Carry -1.1 4.1 0.8 4.5
FI 10Y Carry -1.4 2.1 -0.6 1.7
FI 10Y−2Y Carry -1.0 1.6 0.1 1.0
Treasuries Carry 0.0 0.2 -0.1 0.2
Commodities Carry -1.5 5.5 -2.2 6.7
Currencies Carry -0.4 2.1 -0.4 1.8
Credit Carry 0.0 0.1 0.0 0.1
Options calls Carry -0.1 78.4 -14.5 42.6
Options puts Carry 7.7 4.5 -23.5 63.5

Panel B: Carry Expansions

Equities Carry 0.8 2.5 1.5 2.7
FI 10Y Carry 0.8 1.6 1.0 2.0
FI 10Y−2Y Carry 0.6 1.5 0.7 1.5
Treasuries Carry 0.1 0.2 0.1 0.2
Commodities Carry 1.8 4.9 1.1 4.6
Currencies Carry 0.5 2.4 1.0 1.9
Credit Carry 0.1 0.2 0.1 0.1
Options calls Carry 16.5 19.5 3.9 46.9
Options puts Carry 23.5 21.8 20.3 22.9
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Table XI: Static and Dynamic Risk Exposure in Drawdowns and Expansions

The table reports the decomposition of the returns to carry into their static and dynamic components during
drawdowns and expansions for each asset class’s carry strategy. The static and dynamic decomposition follows
equation (27) and drawdowns and expansions are defined according to equation (29). The table reports the profits
coming from the static and dynamic positions of each carry strategy, as well as the total carry strategy and reports
the percentage of carry profits coming from the dynamic positions, each reported separately during drawdowns and
expansions.

Drawdowns Expansions

Asset class Static Dynamic Total %Dynamic Static Dynamic Total %Dynamic

Equities -2.9 -3.3 -6.2 53.0 1.0 14.1 15.0 93.5
FI 10Y -3.6 -10.3 -13.9 74.4 2.2 8.7 10.8 79.9
FI 10Y−2Y -3.2 -4.1 -7.3 56.3 1.3 6.8 8.1 83.7
Treasuries 0.1 -0.7 -0.6 122.8 0.3 0.6 1.0 66.0
Commodities 2.5 -15.7 -13.2 119.0 4.7 16.8 21.5 77.9
Currencies -4.6 -2.2 -6.8 32.7 4.9 5.2 10.1 51.2
Credit -0.3 -0.2 -0.5 42.0 0.4 0.2 0.6 35.0
Options calls -15.4 -146.1 -161.5 90.5 -4.0 155.6 151.6 102.7
Options puts -1.4 -20.8 -22.2 93.8 0.0 257.5 257.6 100.0
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Figure 1: Cumulative returns on the global carry factor. The figure displays the cumulative sum
of the excess returns of the global carry factor, a diversified carry strategy across all asset classes, and the
currency carry portfolio applied only to currencies. The global carry factor is constructed as the equal-
volatility-weighted average of carry portfolio returns across the asset classes. Specifically, we weight each
asset classes’ carry portfolio by the inverse of its sample volatility so that each carry strategy in each asset
class contributes roughly equally to the total volatility of the diversified portfolio. The sample period is
from 1972 until September 2012. The two series are scaled to the same volatility for ease of comparison.
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Figure 2: Drawdown Dynamics of the Global Carry Factor. The figure shows
the drawdown dynamics of the global carry strategy. We define the drawdown as:
Dt ≡

∑t

s=1
rs − maxu∈{1,...,t}

∑u

s=1
rs, where rs denotes the return on the global carry strategy.

We construct the global carry factor by weighing the carry strategy of each asset classes by the inverse
of the standard deviation of returns, and scaling the weights so that they sum to one. The dash-doted
line corresponds to a global recession indicator. The sample period is 1972 to September 2012.
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