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Abstract

The Multiplicative MIDAS Realized DCC (MMReDCC) model of Bauwens et al. (2016) simultaneously accounts for
short and long-term dynamics in the conditional (co)volatilities of asset returns, in line with the empirical evidence
suggesting that their level is changing over time as a function of economic conditions. This paper aims at improving
the applicability of the model in two directions. First, by proposing an algorithm that relies on the maximization of an
iteratively re-computed moment-based profile likelihood function, which mitigates the incidental parameter problem
arising in large dimensions and keeps estimation feasible. Second, by illustrating a conditional bootstrap procedure to
generate multi-step ahead predictions from the model. In an empirical application on a dataset of forty-six equities,
the MMReDCC model is found to statistically outperform the selected benchmarks in terms of in-sample fit as well as
in terms of out-of-sample covariance predictions. The latter are mostly significant in periods of high market volatility.
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1. Introduction

Building models for predicting the volatility of high dimensional portfolios is important in risk management
and asset allocation. Previous developments on time-varying covariances in large dimensions include the constant
conditional correlation (CCC) model of Bollerslev (1990), where the volatilities of each asset are allowed to vary
through time but the correlations are time invariant, the RiskMetrics model by Morgan (1994), and the DECO model
by Engle and Kelly (2012) who allow correlations to change over time and can be easily applied in vast dimensions.
Recently, Andersen et al. (2001), Barndorff-Nielsen and Shephard (2001) and Barndorff-Nielsen et al. (2011), among
others, opened up a new channel for increasing the precision of covariance matrix estimates and forecasts by exploiting
the information of high frequency asset returns. This development has motivated several researchers to investigate
models directly fitted to series of realized covariance matrices (see Gouriéroux et al. (2009), Jin and Maheu (2013)
and Chiriac and Voev (2011), among others).

Despite the superiority of these models, illustrated for example by Hautsch et al. (2015), there still remain technical
and practical challenges one needs to deal with when constructing covariance matrix forecasts for high-dimensional
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systems. First and foremost, the well-known “curse of dimensionality” problem, implying that the number of pa-
rameters grows as a power function of the cross-sectional model dimension. In order to save parameters, a simple
solution is represented by the so called covariance (or correlation) targeting approach of Engle (2009), which consists
in pre-estimating the constant intercept matrix in the model specification by linking it to the unconditional covariance
matrix of returns. This method can be applied under the stationarity assumption of the model and is one of the most
widely employed techniques to simplifying parameter estimation and reducing the computational burden when the
numerical maximization of the likelihood function becomes difficult.

Recently, Bauwens et al. (2016) investigated a wide class of multivariate models that simultaneously account
for short and long-term dynamics in the conditional (co)volatilities and correlations of asset returns, in line with
the empirical evidence suggesting that their level is changing over time as a function of economic conditions (see,
among others, Engle et al. (2013)). Herein we focus on the Multiplicative MIDAS Realized DCC (MMReDCC)
model, whose main ingredients are a multiplicative component structure, a Mixed Data Sampling (MIDAS) filter to
modeling the secular dynamics and a DCC-type parameterization for the short term component, directly inspired by
the multivariate GARCH literature3. The extensive out-of-sample forecasting comparison performed by Bauwens
et al. (2016), although not identifying a unique winner, shows that the MMReDCC model gives remarkably good
performances in important financial applications such as Value-at-Risk forecasting and portfolio allocation. However,
their results are limited to a relatively low dimensional setting (10 assets) and to a short-term forecasting horizon (1
day).

This paper extends the work by Bauwens et al. (2016) along these directions: estimation for high-dimensional
systems and multi-step forecasting. We contribute to the first line of research by developing a computationally feasible
procedure for the estimation of vast dimensional MMReDCC models. In this respect, it is important to remark that,
although the introduction of a dynamic secular component in the structure of the model adds a major element of
flexibility and enables to obtain more accurate forecasts than standard models reverting to constant mean levels (see
Bauwens et al. (2016)), it also substantially increases the number of parameters to be estimated. Specifically, the long
term component incorporates a scale intercept matrix with number of parameters equal to n(n + 1)/2, where n denotes
the number of assets. In a vast dimensional framework, this quickly translates into the impossibility of estimating the
model since the intercept matrix cannot be directly targeted.

Therefore, we propose to overcome this estimation issue by proposing an iterative procedure inspired by the
covariance targeting idea of Engle (2009). More precisely, based on a Method of Moments estimator, we profile out
the parameters of the intercept matrix and iteratively maximize the likelihood in terms of the other parameters of
interest. We refer to this as the Iterative Moment-Based Profiling (IMP) estimator, as opposed to the Quasi Maximum
Likelihood (QML) estimator which directly maximizes the likelihood with respect to the full parameter vector.

It is worth noticing that the proposed estimation procedure is inspired by a switching algorithm in the sense
discussed by Boswijk (1995) and Cubadda et al. (2015) since the maximization of the overall likelihood is obtained
by switching between optimizations over different blocks of parameters. This idea has a long standing tradition in the
econometric analysis of time series. A simple, well known example of switching algorithm is given by the Cochrane-
Orcutt iterative estimation procedure. Compared to conventional switching algorithms, the procedure that is here
implemented incorporates an additional targeting step. In particular, it reduces the dimension of the optimization
problem to be solved by concentrating out some of the parameters, the elements of the intercept matrix, by means of an
iteratively re-computed moment-based estimator. A comprehensive simulation study is performed to assess the finite-
sample properties of the proposed estimator which is found to deliver unbiased estimates and to be computationally
reliable despite the large number of parameters involved.

The second contribution of the paper is the development of a resampling based procedure for the generation
of multi-step ahead forecasts of the realized covariance matrices. The multiplicative component structure of the
MMReDCC model makes the derivation of a closed-form expression for the h-step predictor impossible. Hence, to
solve this issue we use a distribution-free procedure based on a residual bootstrap method. The bootstrap has been a
standard tool for generating multi-step forecasts from non-linear and non-Gaussian time series models for more than
two decades (see e.g. Clements and Smith (1997)). Its use has been later extended to univariate volatility modeling
(see e.g. Pascual et al. (2006); Shephard and Sheppard (2010)). More recently, Fresoli and Ruiz (2015) have proposed

3We refer to Engle (2002) and Ghysels et al. (2007) as leading references for detailed discussions of the DCC model and MIDAS regressions.
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a simple resampling algorithm that makes use of residual bootstrap to compute multi-step forecasts from DCC models.
The bootstrap procedure which is implemented in this paper builds on the work of Fresoli and Ruiz (2015) but the
algorithm is adapted to the dynamic modeling of realized covariance matrices.

Finally, the results of two different applications to real data are presented and discussed. In the first one, we
focus on a low dimensional setting (ten assets), in which both the IMP and one-step QML estimation procedures are
feasible, and compare the estimates obtained by means of both algorithms. We find that the IMP-based estimates
are sufficiently close to the QML ones, so that using the IMP method in large dimensions is a sensible approach.
We further consider the case in which the IMP estimated parameters are used as starting values for the one-step
QMLE: despite an increase in the maximized likelihood value, the improvement can be considered rather marginal,
thus suggesting that the implementation of the IMP algorithm alone may be sufficient in practical applications.

In the second application the MMReDCC model estimated for forty-six assets by the IMP method is used to
generate forecasts of the realized covariance matrix up to twenty days ahead, and compared to existing benchmarks
not accounting for short and long term (co)volatility dynamics. It emerges that over calm periods, simpler model
specifications tend to be preferred especially at the shortest horizons, while during the 2007-2008 financial crisis
accounting for time-varying long term dynamics in the conditional covariance process generates superior forecasts.
The latter are particularly significant at the longest horizons.

The remainder of the paper is organized as follows. Section 2 briefly recalls the structure of the MMReDCC
model and explains the curse of dimensionality issue. Section 3 introduces the IMP algorithm and Section 4 presents
the results of a Monte Carlo experiment aimed at assessing the finite sample statistical properties of the proposed
estimation algorithm. The bootstrap procedure for computing multi-step ahead forecasts is explained in Section 5,
along with a simulation study to assess its final sample behavior. Section 6 contains the empirical results for the
in-sample estimation comparison and the out-of-sample forecasting exercise. Section 7 concludes with some final
remarks.

2. The MMReDCC model

Let Ct be a n×n positive definite and symmetric (PDS) realized estimator of the latent integrated covariance matrix
of daily returns. In the following, unless otherwise stated, we will refer to Ct as the realized covariance (RC), although
any other consistent PDS estimator could be used. Conditionally on the set consisting of all relevant information up
to and including day t − 1, Ct is assumed to follow a n-dimensional central Wishart distribution:

Ct |It−1 ∼ Wn(ν, S t/ν), ∀t = 1, . . . ,T, (1)

where ν (> n − 1) is the degrees of freedom parameter and St is the PDS conditional mean matrix of order n. Under
the assumption of absence of microstructure noise and other biases (see Barndorff-Nielsen and Shephard (2001)), St
represents the conditional covariance matrix of returns, which is our object of interest.

In the MMReDCC model, St is designed to take into account the long run movements in the levels around which
realized (co)variances (and by extension, correlations) fluctuate from day to day. To this extent, the model features a
multiplicative decomposition of the conditional covariance matrix St into a smoothly varying or secular component
Mt=LtLt

′and a short-lived component St
∗, such that St can be rewritten as St=Lt St

∗Lt
′, where the matrix square root

Lt can be obtained by a Cholesky factorization of Mt. These components can then be modeled separately.
First, the secular component is specified parametrically and extracted by means of a MIDAS filter assumed to be

a weighted sum of K lagged realized covariance matrices over a long horizon, where the number of lags spanned in
the MIDAS specification is usually chosen to minimize the trade-off between the highest in-sample likelihood value
and the number of observations lost to initialize the filter. It is expressed as

Mt = Λ + θ

K∑
k=1

φk(ω)Ct−k. (2)

In the right hand side of Eq.(2), the first term Λ is a n × n symmetric and semi-positive definite matrix of constant pa-
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Table 1: Number of parameters of MMReDCC models
Note: Entries report the number of parameters as a function of the dimension n; nΛ denotes the number of unique parameters contained in the Λ matrix, ψ denotes the
full vector of model parameters and ψ̃ the vector of parameters excluding nΛ.

n = 5 n = 10 n = 20 n = 50 n = 100
nΛ 15 55 210 1275 5050
ψ 29 79 254 1379 5254
ψ̃ 14 24 44 104 204

rameters, θ is a positive scalar and φk(·) is a weight function parametrized according to the restricted Beta polynomial

φk(ω) =

(
1 − k

K

)ω−1

∑K
j=1

(
1 − j

K

)ω−1 .

The scalar parameter ω determines the shape of the function and in order to achieve a time-decaying pattern of the
weights, it is constrained to be larger than 1. For identification, the constraint

∑K
k=1 φk(ω) = 1 is imposed.

Second, the dynamics of the short term component S ∗t is specified according to a scalar DCC parametrization that
enables a separate treatment of conditional volatilities and correlations, thus allowing for a high degree of flexibility.
Letting X be any square matrix of arbitrary size n, in the remainder the notation diag{X} is used to denote a n × n
diagonal matrix with main diagonal elements equal to the corresponding diagonal elements of X. Therefore, assuming
that S ∗t = D∗t R∗t D∗t , where D∗t = diag{S ∗t }

1/2, their scalar specifications correspond to the following equations:

S ∗ii,t = (1 − γi − δi) + γiC∗ii,t−1 + δiS ∗ii,t−1, ∀i = 1, . . . , n (3)
R∗t = (1 − α − β)In + αP∗t−1 + βR∗t−1, (4)

where γi > 0, δi ≥ 0, γi + δi < 1, α > 0, β ≥ 0, α+ β < 1, C∗t = L−1
t Ct(L′t )

−1 and P∗t = (diag{C∗t })
−1/2C∗t (diag{C∗t })

−1/2.
The matrix C∗t is the realized covariance matrix purged of its long term component and the matrix P∗t is the corre-
sponding short term realized correlation matrix. Mean reversion to unity in Eq.(4) and to an identity matrix in Eq.(4)
is needed for identification of the different components. Let γ = {γ1, ..., γn}, δ = {δ1, ..., δn} for further use.

The parameters can be estimated by maximizing the following Wishart (quasi) log-likelihood function in one step:

`T (ψ) = −
1
2

T∑
t=1

{
log |S t(ψ)| + tr[S t(ψ)−1Ct]

}
. (5)

The finite-dimensional parameter vector4 ψ = {vech(Λ), θ, ω,γ, δ, α, β}, has length {nΛ + 2n + 4} where nΛ = n(n +

1)/2 ∼ O(n2) denotes the number of unique parameters included in the intercept matrix Λ of Eq.(2). It is obvious that,
as n increases, the curse of dimensionality problem quickly arises, leading to the number of parameters listed in the
first two rows of Table 1. Observe that estimation becomes already cumbersome after n = 20 and almost impossible
for n ≥ 50.

On the other hand, the last row of Table 1 shows that an obvious way to keep the model tractable is to avoid
estimating the parameters of the matrix Λ. This would be sufficient to reduce the order to 2n + 4 ∼ O(n), thus making
the model estimable also for large n.

In the following section we put forward a feasible estimation procedure that aims at overcoming the direct esti-
mation of the long term component intercept matrix, thus crucially mitigating the computational complexity of the
model.

4Note that ψ does not include the degrees of freedom parameter ν, as the first order conditions for the estimation of the parameter vector ψ do
not depend on ν (see Bauwens et al. (2016)).
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3. An Iterative Moment based Profiling (IMP) algorithm

In this section we discuss an iterative procedure for fitting the MMReDCC model to large dimensional datasets.
The basic idea underlying the proposed algorithm is to eliminate from the likelihood maximization the parameters of
the intercept matrix Λ using a technique that builds upon the covariance targeting discussed in Pedersen and Rahbek
(2014) for BEKK and Engle et al. (2008) for DCC models. First of all, notice that from Eq.(2) and the following
relation

Λ = E(Mt) − θ
K∑

k=1

φk(ω)E(Ct−k),

a moment based estimator of the Λ intercept matrix is given by

Λ̂ =
1
T

T∑
t=1

Mt − θ

K∑
k=1

φk(ω)Ct−k

 . (6)

Obviously, given the latent nature of Mt, the estimator in Eq.(6) cannot be computed in practice and hence the covari-
ance targeting approach cannot be applied in the usual way. It is worth noticing that, if Lt and S ∗t were assumed to be
independent, given E(S ∗t ) = In, it would hold that E(Ct) = E(Mt), implying that an asymptotically equivalent version
of Eq.(6) could be explicitly computed by replacing Mt by Ct. However, this is not the approach we pursue, since
the assumption of independence of the short and long term sources is difficult to justify and would result in a rather
counterintuitive and arbitrary constraint. Hence, we adopt a different method.

It can be seen from Eq.(6) that no estimate of Λ makes sense regardless of the value of (θ, ω), so that by making
this dependence explicit, it is possible to obtain an estimate of Λ as a function of (θ, ω), i.e. Λ̂(θ, ω). In this way,
a different estimate of Λ is required for each different value of the other two parameters. Therefore, by substituting
Λ̂(θ, ω) for Λ in the Wishart QML function stated in Eq.(5), the following moment based QML approximation is
obtained:

˜̀T (ψ̃) = −
1
2

T∑
t=1

{
log |L̃t(θ, ω)S ∗t (ψ̃)L̃′t (θ, ω)| + tr{[L̃t(θ, ω)S ∗t (ψ̃)L̃′t (θ, ω)]−1Ct}

}
(7)

with ψ̃ = (ω, θ,ψS ∗ )
′, ψ′S ∗ = (γ, δ, α, β) and

M̃t(θ, ω) = L̃t(θ, ω)L̃′t (θ, ω) = Λ̂(θ, ω) + θ

K∑
k=1

φk(ω)Ct−k. (8)

The method we propose consists in estimating the parameters in ψ̃ by a block-wise maximization of the moment-
based QML function given in Eq.(7). First, conditional on some reasonable initial guess of (θ, ω), ˜̀T (ψ̃) is maximized
with respect to the short term parameters ψS ∗ and then, conditional on ψ̂S ∗ , the same function is maximized with
respect to (θ, ω). The procedure is iterated for j = 0, . . . , J until some convergence criterion on the likelihood is met.

To initialize the algorithm at j = 0, one can reasonably use as starting values the parameter estimates obtained
by fitting the model to low dimensional subsets of data; also, an initial guess for the long term component Mt,0 could
be either provided in a naive way, i.e. using the series of observed realized covariance matrices directly, or in a more
sophisticated manner, by fitting to the data a nonparametric kernel smoother with an optimized bandwidth parameter.
Note that in order to guarantee the positive definiteness of M̃t(θ, ω) in Eq.(8), it suffices to initialize Mt,0 from a PDS
matrix and to impose θ > 0. Given that the observed series of Ct, for every t, is PDS by definition, Λ̂(θ, ω) is assured
to be at least semi-positive definite at each iteration j > 0.

Once Λ j(θ j, ω j) has been computed at the initial iteration j = 0, for every j > 0 the steps conducted in the
algorithm are as follows:

Step 1 Plug Λ j−1(θ j−1, ω j−1) into the dynamic equation for M̃t, j and L̃t, j = chol(M̃t, j) for all t;
Step 2 For each asset i = 1, . . . , n, obtain the short term GARCH(1,1) parameters as follows:

{γ̂i, j, δ̂i, j} = arg max
{γi,δi}

˜̀T

(
θ j−1, ω j−1, α j−1, β j−1

)
;
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Table 2: Simulation setting
In Panel A, for every i = 1, ..., n it holds {γi + δi} < 1. Entries of Panel B are scalar parameters chosen to initialize the algorithm in both sets of
simulation exercises.

Panel A: Parameters
θ 0.5
K 264
ω 15
Λ Λi,i = 0.02, Λi, j = 0.002 for i 6= j
γi ∼ U(γ0 − 0.02, γ0 + 0.02), γ0 = 0.2
δi ∼ U(2δ0 + γi − 1 + 0.01, 1 − γi − 0.01), δ0 = 0.7
α 0.2
β 0.7
ν 2n
T 1000, 2000
burn-in observations 1000

Panel B: Initial values
θ0 ω0 γi,0 δi,0 α0 β0
0.8 10 0.05 0.90 0.05 0.90

Step 3 Conditional on the estimated vectors γ̂ j = (γ̂1, j, . . . , γ̂n, j)′ and δ̂ j = (δ̂1, j, . . . , δ̂n, j)′, maximize the same log-
likelihood function with respect to the short term DCC correlation parameters:

{α̂ j, β̂ j} = arg max
{α,β}

˜̀T

(
θ j−1, ω j−1, γ̂ j, δ̂ j

)
;

Step 4 Conditionally on the vector of short term parameter estimates ψ̂S ∗ = {γ̂ j, δ̂ j, α̂ j, β̂ j}, maximize ˜̀T with respect
to {θ j, ω j}; these estimates are used to compute an updated version of Λ̂ j(θ j, ω j);

Step 5 Check for convergence, i.e. if ∣∣∣∣∣∣ ˜̀T (ψ̃ j) − ˜̀T (ψ̃ j−1)
˜̀T (ψ̃ j−1)

∣∣∣∣∣∣ < ε, ε = 0.000001;

if convergence is achieved, the algorithm stops; otherwise update all parameter estimates and go back to Step 1.

It is worth to stress that although ˜̀T (ψ̃) looks like a profile likelihood, it is not since Λ̂(θ, ω) is not a QML estimator
but a feasible moment estimator. This motivates our choice to refer to Steps 1 − 5 as the Iterative Moment based
Profiling algorithm, or IMP for short. This implies that ψ̃ is typically less efficient than the standard QML estimator
that maximizes Eq.(5) in one step. We come back to this issue in Section 6.1.

4. Simulation study

A Monte Carlo study is conducted to analyze the finite sample properties of the IMP estimator. We assume the
MMReDCC to be the DGP and we generate 500 time series of lengths T = 1000 and 2000 for n = 10, 20, 40 and 50,
with true parameter values inspired by the estimates given in Bauwens et al. (2016), as summarized in Table 2.

It is important to stress that, in order to initialize the algorithm, parameter values have to be carefully chosen.
This is a standard requirement in every optimization procedure where the initial amount of information on the model
parameters is limited. In our situation we are mainly concerned with the impact that different choices of Mt,0, more
than the remaining set of parameters, may have on the convergence of the IMP algorithm. We evaluate this by
performing a robustness check based on the two possible initializations of Mt,0 mentioned in Section 3.
In the first set of repetitions Mt,0 is computed by fitting to the series of simulated realized covariance matrices a
Nadaraya-Watson kernel estimator with a single bandwidth parameter for the whole covariance matrix. As in Bauwens
et al. (2016) and Bauwens et al. (2013), the optimal bandwidth is selected by a least squares cross-validation criterion,
where the six-month rolling covariance is used as the reference for the computation of least squares. In the second
(equivalent) simulation study, Mt,0 is obtained by substituting in Eq. (6) the observed Ct for the latent matrix Mt at
each t. In both cases, the initial scalar model parameters are set equal to the values listed in Panel B of Table 2. The
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Table 3: Simulation exercise I: summary statistics
The table reports summary statistics of the first set of simulations where Mt,0 is initialized using a nonparametric kernel estimator, see Section 3. To save on space,
γ̄ and δ̄ are reported as averaged values across series and replications. RB denotes the Relative Bias computed over 500 replications. True parameter values used to
simulate the process at the top of the table.

T= 1000 T= 2000
γ̄ δ̄ α β θ ω γ̄ δ̄ α β θ ω2

0.197 0.705 0.2 0.7 0.5 15 0.197 0.705 0.2 0.7 0.5 15
n=10 n=10

RB 0.098 -0.036 0.020 0.003 -0.058 -0.120 RB -0.039 -0.002 0.033 0.003 0.053 -0.095
IQR 0.048 0.093 0.006 0.010 0.044 1.641 IQR 0.032 0.068 0.006 0.008 0.037 1.819
Mean 0.202 0.699 0.204 0.702 0.475 14.820 Mean 0.2 0.713 0.207 0.702 0.526 13.58
Min 0.176 0.660 0.191 0.679 0.393 7.460 Min 0.153 0.669 0.183 0.523 0.072 1.949
Max 0.214 0.735 0.220 0.728 0.709 18.943 Max 0.22 0.803 0.37 0.817 1.000 17.74

n=20 n=20
RB 0.049 -0.009 0.019 0.001 -0.056 -0.110 RB 0.036 0.011 0.024 0.002 -0.014 -0.080
IQR 0.046 0.083 0.003 0.006 0.019 0.713 IQR 0.031 0.079 0.002 0.004 0.015 0.622
Mean 0.202 0.701 0.204 0.701 0.472 14.782 Mean 0.209 0.708 0.205 0.702 0.496 13.801
Min 0.171 0.633 0.197 0.687 0.430 12.802 Min 0.197 0.678 0.200 0.694 0.001 2.440
Max 0.219 0.744 0.211 0.711 0.532 16.759 Max 0.221 0.739 0.220 0.748 0.598 15.270

n=40 n=40
RB 0.028 0.023 0.015 0.002 -0.049 -0.080 RB 0.033 0.029 0.022 0.002 -0.014 -0.072
IQR 0.042 0.077 0.002 0.002 0.011 0.372 IQR 0.030 0.064 0.001 0.002 0.007 0.263
Mean 0.208 0.715 0.203 0.701 0.476 14.810 Mean 0.209 0.719 0.204 0.702 0.493 13.925
Min 0.190 0.656 0.060 0.695 0.446 3.735 Min 0.181 0.671 0.182 0.674 0.172 1.000
Max 0.217 0.762 0.222 0.799 0.705 16.500 Max 0.221 0.761 0.223 0.744 0.837 14.760

n=50 n=50
RB 0.027 0.011 0.016 0.001 -0.045 0.012 RB 0.029 0.027 0.017 0.001 -0.011 -0.037
IQR 0.042 0.076 0.001 0.002 0.008 0.293 IQR 0.030 0.056 0.001 0.002 0.007 0.220
Mean 0.208 0.716 0.203 0.701 0.473 15.182 Mean 0.208 0.720 0.203 0.701 0.494 14.442
Min 0.162 0.644 0.200 0.697 0.455 13.150 Min 0.191 0.657 0.199 0.695 0.474 12.089
Max 0.220 0.814 0.207 0.705 0.525 15.830 Max 0.222 0.763 0.207 0.707 0.529 16.238

estimation bias is evaluated by the relative bias (RB), computed as 1
500

∑500
i=1

ψ̂i−ψ
ψ

, along with the interquartile range
(IQR), mean, minimum and maximum of the obtained parameter estimates. To save space, we report averaged bias
results for the parameters of the MIDAS intercept matrix in a separate table.

Table 3 reports results from the first simulation exercise. As expected, the relative biases decrease as n or T
increases. The biases for the parameters of the short term volatility and correlation components are very small, being
smaller than five per cent in most of the cases, with one exception recorded for γ̄ at T = 1000 for n = 10. As for
the scalar parameters in the MIDAS specification, the bias for θ is negative in seven out of eight cases (the exception
occurs for n = 10 at T = 2000) and ranging from the maximum of 5.8% (in absolute value) for n = 10 and T = 1000
to the lowest value of 1.1% for n = 50 and T = 2000. The bias on the ω parameter, also generally negative, tends
to decrease with n but is usually of higher order (from 1.1 to 12% in absolute value). A similar behavior is observed
for the IQR measure, which decreases across n and T but remains on higher values for the parameter ω. However,
this does not represent a major concern as the Beta weight function is not very sensitive to small variations of this
parameter and therefore we do not expect the likelihood function to be either.

Table 4 gives an idea of the robustness of the results to the other initialization of the long term component. Entries
can be directly compared to those in Table 3. As hoped for, the initial choice has a minor impact on the overall
accuracy of the estimator, as the parameter biases are in the same range of magnitude and the comments made earlier
are still valid under this alternative scenario.

Figure 1 contains plots of the Monte Carlo standard deviations of the estimated θ, ω, α and β parameters against the
cross-section size. In all cases, standard deviations tend to decline as the cross-section dimension grows, with a faster
decline when T = 2000. The two approaches produce similar parameter standard deviations, with slightly bigger
values recorded for θ and ω under the second simulation experiment in correspondence with the higher cross-section
sizes.

If we move to analyzing the bias results for the scale MIDAS intercept matrix, Table 5 shows that under both
sets of simulation exercises the estimator Λ̂(θ, ω) well approximates the true Λ matrix at all cross-section dimensions,
with the parameter bias (averaged across diagonal and off-diagonal elements) clearly improving with increasing n and
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Table 4: Simulation exercise II: summary statistics
The table reports summary statistics of the second set of simulations where Mt,0 is initialized from the series of realized covariance matrices, see Section 3. To save
on space, γ̄ and δ̄ are reported as averaged values across series and replications. RB denotes the Relative Bias computed over 500 replications. True parameter values
used to simulate the process at the top of the table.

T= 1000 T= 2000
γ̄ δ̄ α β θ ω γ̄ δ̄ α β θ ω2

0.197 0.705 0.2 0.7 0.5 15 0.197 0.705 0.2 0.7 0.5 15
n=10 n=10

RB -0.077 0.013 0.019 0.002 -0.032 -0.007 RB 0.043 0.006 0.025 0.002 -0.012 -0.069
IQR 0.070 0.113 0.007 0.010 0.043 1.664 IQR 0.028 0.046 0.004 0.007 0.024 0.870
Mean 0.191 0.708 0.204 0.701 0.484 14.892 Mean 0.211 0.707 0.205 0.701 0.494 13.959
Min 0.107 0.588 0.191 0.678 0.393 6.678 Min 0.189 0.654 0.196 0.686 0.435 9.614
Max 0.231 0.833 0.218 0.723 0.927 19.237 Max 0.232 0.748 0.213 0.715 0.623 15.535

n=20 n=20
RB 0.048 -0.002 0.018 0.002 -0.045 -0.008 RB 0.006 0.039 0.023 0.002 -0.011 -0.064
IQR 0.042 0.085 0.003 0.005 0.021 0.719 IQR 0.030 0.060 0.002 0.004 0.013 0.510
Mean 0.207 0.702 0.204 0.701 0.477 14.887 Mean 0.206 0.721 0.205 0.701 0.494 14.047
Min 0.196 0.649 0.197 0.689 0.429 6.751 Min 0.164 0.680 0.199 0.692 0.467 11.108
Max 0.220 0.740 0.214 0.713 0.887 16.573 Max 0.225 0.772 0.209 0.710 0.555 15.241

n=40 n=40
RB 0.046 0.017 0.017 0.003 -0.045 0.005 RB 0.050 0.016 0.021 0.002 -0.012 -0.057
IQR 0.042 0.080 0.002 0.003 0.010 0.421 IQR 0.029 0.053 0.001 0.002 0.007 0.245
Mean 0.209 0.713 0.203 0.702 0.477 15.078 Mean 0.210 0.718 0.204 0.701 0.494 14.148
Min 0.197 0.682 0.193 0.696 0.116 6.895 Min 0.194 0.658 0.202 0.697 0.479 8.433
Max 0.219 0.756 0.216 0.807 0.955 49.985 Max 0.223 0.768 0.212 0.708 0.726 14.638

n=50 n=50
RB 0.029 0.028 0.016 0.002 -0.053 0.015 RB 0.028 0.018 0.020 0.002 -0.017 -0.048
IQR 0.041 0.071 0.001 0.002 0.009 0.342 IQR 0.030 0.061 0.001 0.001 0.005 0.195
Mean 0.208 0.715 0.203 0.701 0.473 15.225 Mean 0.208 0.721 0.204 0.701 0.492 14.278
Min 0.190 0.632 0.200 0.698 0.457 14.190 Min 0.184 0.674 0.202 0.698 0.437 11.178
Max 0.220 0.766 0.206 0.705 0.494 15.844 Max 0.216 0.766 0.209 0.713 0.508 14.742

Table 5: Bias results for the scale MIDAS intercept matrix
Panel A reports summary statistics of the first simulation exercise where Mt,0 is initialized from a nonparametric smoother while Panel B reports results from the
second simulation exercise where the series of observed realized covariance matrices are used. RB{i,i} denotes averaged values over diagonal terms, while RB{i,j}
denotes averages over off diagonal terms. Number of simulations is 500.

Panel A: Simulation exercise I
T=1000 T=2000

n=10 n=10
RB{i,i} 0.080 RB{i,i} 0.033
RB{i,j} 0.079 RB{i,j} 0.000

n=20 n=20
RB{i,i} 0.073 RB{i,i} 0.068
RB{i,j} 0.062 RB{i,j} 0.048

n=40 n=40
RB{i,i} 0.073 RB{i,i} 0.062
RB{i,j} 0.061 RB{i,j} 0.046

n=50 n=50
RB{i,i} 0.072 RB{i,i} 0.004
RB{i,j} 0.057 RB{i,j} 0.037

Panel B: Simulation exercise II
T=1000 T=2000

n=10 n=10
RB{i,i} 0.075 RB{i,i} 0.060
RB{i,j} 0.066 RB{i,j} 0.040

n=20 n=20
RB{i,i} 0.072 RB{i,i} 0.058
RB{i,j} 0.060 RB{i,j} 0.044

n=40 n=40
RB{i,i} 0.073 RB{i,i} 0.058
RB{i,j} 0.159 RB{i,j} 0.043

n=50 n=50
RB{i,i} 0.072 RB{i,i} 0.058
RB{i,j} 0.058 RB{i,j} 0.043

T . Again, the direct comparison of Panels A and B confirms that the algorithm initialized from the series of realized
covariance matrices overall performs no worse than the one initialized from a nonparametric smoother.

Finally, as the final interest is in the overall accuracy of the model in fitting conditional (co)variances and corre-
lations (as a referee pointed out to us), we complement this section with an additional table that extends the Monte
Carlo study to analyze the properties of the estimated in-sample series. Specifically, for each of the two exercises
performed, we compare simulated and estimated variances, covariances and correlations in terms of mean, standard
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deviation, lower and upper quartiles. Moreover, we compare the performance, in terms of variability, of the equally
weighted portfolios constructed employing the true and the estimated conditional covariance matrix. Table 6 illus-
trates the strong similarity between the true series and the series obtained using the estimated model parameters, which
supports the set of results discussed previously. Once again, no substantial difference can be detected between the two
panels indexing the chosen initialization approach.

To summarize, the simulation study carried out in this section suggests that the proposed algorithm works accu-
rately in finite samples and converges irrespective of the initialization choice made for the Mt matrices. Overall, the
moment-based estimator used for iteratively targeting the constant intercept matrix in the secular component does not
create a severe bias problem in the estimation of the other parameters, thus representing a feasible solution to alleviate
the curse of dimensionality issue that would otherwise prevent the use of the MMReDCC model in high dimensional
applications. Both initialization methods for Mt,0 can be used in practice. In the empirical section, we have opted for
the nonparametric smoother.

Figure 1: IMP Monte Carlo standard deviations
The figure shows standard deviations of the IMP Monte Carlo estimated scalar parameters θ, ω, α and β against the cross-section dimension ranging from 10 to 50.
Results from the first (Sim. I) and second (Sim. II) simulation study are jointly reported in Panel A for T=1000 and Panel B for T=2000.
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Panel B: T=2000
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5. Multi-step Forecasting

Models featuring short and long-run dynamics are particularly relevant for computing multi-step-ahead predic-
tions, as their dynamic component structure is conceivably expected to be beneficial for long-term forecasts. Unfor-
tunately, the complex nonlinear structure of the MMReDCC model prevents the analytical derivation of closed-form
solutions. In order to overcome this limit, we compute multi-step predictions by means of a procedure based on boot-
strap resampling. Subsection 5.1 formally introduces the procedure while the next one investigates its properties in
finite samples.

5.1. A conditional bootstrap (CB) procedure

At the outset, notice that Eq.(1) implies that E(Ct |=t−1) = S t, so that Ct can be represented as

Ct = S 1/2
t Ut(S

1/2
t )′, (9)
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Table 6: Properties of the estimator
The table shows summary statistics of simulated (True) and estimated variance, covariance and correlation series, with values reported as averages across assets (n)
and simulations (500). Sim .I denotes the first simulation exercise where Mt,0 is initialized from a nonparametric smoother while Sim .II uses the series of realized
covariance matrices. In the last two columns we compare the properties of the volatilities of the n-dimensional equally weighted portfolios constructed using the true
and the estimated conditional covariance matrix at each t. Q1 and Q3 respectively denote the first (0.25) and the third (0.75) quartile.

n T Stat. Volatility (e-03) Covariance (e-03) Correlation Portf. volatility
True Sim .I Sim .II True Sim .I Sim .II True Sim .I Sim .II True Sim .I Sim .II

10 1000 Mean 0.924 0.932 0.938 0.109 0.109 0.110 0.116 0.116 0.118 0.014 0.014 0.015
Std 0.217 0.220 0.230 0.148 0.149 0.147 0.149 0.148 0.145 0.002 0.002 0.001
Q1 0.765 0.771 0.757 0.010 0.010 0.011 0.011 0.012 0.012 0.013 0.013 0.014
Q3 1.050 1.060 1.059 0.203 0.204 0.205 0.223 0.222 0.243 0.015 0.015 0.016

2000 Mean 0.995 1.006 0.962 0.156 0.157 0.157 0.151 0.150 0.148 0.014 0.014 0.014
Std 0.172 0.181 0.202 0.118 0.122 0.121 0.114 0.115 0.117 0.001 0.001 0.001
Q1 0.836 0.840 0.827 0.060 0.059 0.058 0.062 0.060 0.061 0.014 0.014 0.013
Q3 1.128 1.145 1.150 0.244 0.247 0.220 0.240 0.240 0.238 0.015 0.015 0.015

20 1000 Mean 0.963 0.971 0.972 0.136 0.136 0.136 0.139 0.138 0.138 0.013 0.013 0.013
Std 0.157 0.161 0.162 0.110 0.111 0.111 0.108 0.108 0.108 0.001 0.001 0.001
Q1 0.828 0.833 0.832 0.055 0.055 0.055 0.060 0.060 0.060 0.013 0.013 0.013
Q3 1.075 1.086 1.087 0.210 0.211 0.212 0.218 0.218 0.218 0.014 0.014 0.014

2000 Mean 0.963 0.973 1.002 0.136 0.137 0.157 0.139 0.138 0.152 0.013 0.013 0.014
Std 0.161 0.168 0.158 0.113 0.115 0.107 0.111 0.111 0.101 0.001 0.001 0.001
Q1 0.828 0.832 0.854 0.055 0.055 0.072 0.060 0.059 0.075 0.013 0.013 0.013
Q3 1.075 1.089 1.128 0.210 0.212 0.235 0.218 0.218 0.230 0.014 0.014 0.014

40 1000 Mean 1.040 1.048 1.294 0.188 0.189 0.235 0.176 0.175 0.178 0.014 0.015 0.015
Std 0.123 0.131 0.805 0.087 0.088 0.215 0.079 0.079 0.076 0.001 0.001 0.001
Q1 0.894 0.896 0.902 0.102 0.103 0.106 0.106 0.106 0.109 0.014 0.014 0.014
Q3 1.168 1.181 1.285 0.262 0.264 0.288 0.245 0.244 0.248 0.015 0.015 0.015

2000 Mean 1.046 1.042 1.059 0.191 0.198 0.195 0.178 0.179 0.179 0.015 0.015 0.015
Std 0.123 0.125 0.129 0.088 0.089 0.088 0.078 0.078 0.078 0.001 0.001 0.001
Q1 0.899 0.876 0.905 0.106 0.109 0.107 0.109 0.109 0.110 0.014 0.014 0.014
Q3 1.176 1.057 1.194 0.266 0.274 0.271 0.247 0.251 0.248 0.015 0.015 0.015

50 1000 Mean 1.078 1.086 1.098 0.212 0.213 0.221 0.191 0.190 0.195 0.015 0.015 0.015
Std 0.115 0.123 0.120 0.082 0.082 0.080 0.071 0.071 0.068 0.001 0.001 0.001
Q1 0.918 0.920 0.928 0.118 0.118 0.124 0.119 0.119 0.124 0.015 0.015 0.015
Q3 1.222 1.234 1.249 0.294 0.296 0.304 0.262 0.261 0.266 0.016 0.016 0.016

2000 Mean 1.088 1.098 1.088 0.219 0.220 0.214 0.195 0.195 0.191 0.015 0.015 0.015
Std 0.114 0.121 0.123 0.082 0.083 0.084 0.070 0.070 0.072 0.001 0.001 0.001
Q1 0.925 0.928 0.922 0.123 0.123 0.119 0.124 0.123 0.120 0.015 0.015 0.015
Q3 1.235 1.249 1.235 0.302 0.304 0.295 0.266 0.265 0.261 0.016 0.016 0.016

where Ut is an element of a sequence of iid random matrices with E(Ut) = In, and S 1/2
t is any PDS matrix such

that S 1/2
t (S 1/2

t )′ = S t. If Ut ∼ Wn(ν, In/ν), the Wishart assumption of Eq.(1) is recovered, but this is not needed to
justify the bootstrap procedure used for generating multi-step-ahead forecasts of the realized covariance matrix Ct.
The procedure is described in the following six steps.

Step 1 Estimate the model on {Ct, t = 1, . . . ,T } and obtain the parameter vector ψ̂ = {vech(Λ̂), θ̂, ω̂, γ̂, δ̂, α̂, β̂} to
compute the estimated conditional covariance Ŝ t.

Step 2 Compute the estimated residuals

Ût = Ŝ −1/2
t Ct(Ŝ

−1/2
t )′, t = 1, . . . ,T

and rescale them to enforce their sample mean to be equal to In:

Ũt = (Ê−1/2
u )Ût(Ê−1/2

u )′,

where Êu = (1/T )
∑T

t=1 Ût. The rescaled Ũt can then be used to generate bootstrap replicates of CT+ j, for
j = 1, . . . , h, where h denotes the chosen forecast horizon.

Step 3 Draw with replacement a bootstrap sample {ŨT+1|T , . . . , ŨT+h|T } of length h from the empirical CDF of {Ũt, t =

1, . . . ,T }.
Step 4 Initialize the procedure at CT , R̂∗T , P̂∗T , Ŝ ∗T and L̂T . For j = 1 . . . , h, recursively generate a sequence of bootstrap
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replicates of CT+ j as follows:

R∗T+ j|T = (1 − α̂ − β̂)In + α̂P∗T+ j−1|T + β̂R∗T+ j−1|T ,

S ∗ii,T+ j|T = (1 − γ̂i − δ̂i) + γ̂iC∗ii,T+ j−1|T + δ̂iS ∗ii,T+ j−1|T ,

S ∗T+ j|T = (diag{S ∗T+ j|T })
1/2R∗T+ j|T (diag{S ∗T+ j|T })

1/2,

S T+ j|T = LT+ j|T S ∗T+ j|T L′T+ j|T ,

CT+ j|T = S 1/2
T+ j|T ŨT+ j|T (S 1/2

T+ j|T )
′

,

MT+ j|T = Λ̂(θ, ω) + θ̂

K∑
k=1

φk(ω̂)CT−k+ j|T ,

LT+ j|T = M1/2
T+ j|T ,

C∗T+ j|T = L−1
T+ j|T CT+ j|T (L

′

T+ j|T )−1,

P∗T+ j|T = (diag{C∗T+ j|T })
−1/2C∗T+ j|T (diag{C∗T+ j|T })

−1/2.

Step 5 Repeat steps 3–4 B times, where B is set sufficiently large (e.g. B=5000). As a result, the procedure generates
an array of h × B bootstrap replicates (C(1)

T+ j|T , . . . ,C
(B)
T+ j|T ) for CT+ j|T .

Step 6 Finally, the h-steps-ahead forecast is obtained as

Ŝ T,h =
1
B

B∑
b=1

C(b)
T+h|T .

It is worth to mention that the proposed procedure is applied by conditioning on the estimated model parameters,
namely by keeping fixed the parameter estimates in all bootstrap forecasts of CT+ j, for j = 1, . . . , h, such that the
achieved bootstrap h-steps ahead prediction depends only on the resampled residuals. Clearly, this could be relaxed in
order to account for the variability associated to parameter estimation by re-estimating ψ on each bootstrap replicate,
but it would come at the not negligible cost of increasing computational complexity and time. Overall, the results
presented in Section 5.2 provide sufficient evidence that our approach works fine in finite samples.

Finally, even if our primary interest is in forecasting from MMReDCC models, the proposed forecasting procedure
is very general and can be readily adapted to any model that admits the representation in Eq.(9), where S t is modeled
as a function of past information =t−1. For example, in the empirical application which is presented in Section 6.2,
we also use it to generate multi-step ahead forecasts of Ct from the cRDCC model of Bauwens et al. (2012). To this
purpose, the dynamic equations in step 4 must be replaced by those pertaining to the specific model of interest.

5.2. Finite sample properties
In order to analyze the finite sample behavior of the proposed bootstrap procedure, we devise a simple Monte

Carlo experiment. Namely, we generate 1000 series with the MMReDCC model using the same simulation design
used in Section 4, with the nonparametric smoother chosen as the initialization method for Mt,0

5. The sample sizes
considered are T = 1000 and 2000 and the cross-sectional dimensions are n = 5, 10, 20 and 50. In each case,
we generate j = 1, . . . , h future values of the simulated series, where h = 2, 10 and 20, that are considered as the
reference forecasting sample.

For each obtained set of B bootstrap replicates (C(1)
T+ j|T , . . . ,C

(B)
T+ j|T ), we compute the corresponding prediction

limits, defined as the quantiles of the bootstrap distribution function of C(b)
T+ j|T (b = 1, . . . , B). More specifically, if

Dc,B(z) is an estimate of the distribution function Dc(z) = Pr(CT+ j|T ≤ z), then, a 100(1 − ϑ)% prediction interval for
CT+ j is achieved as [

LC,B(z),UC,B(z)
]

=

[
QC,B

(
ϑ

2

)
,QC,B

(
1 −

ϑ

2

)]
, (10)

5Results obtained employing the alternative initialization approach are qualitatively similar and thus not reported for brevity.
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with QC,B = D−1
c,B. Bootstrap intervals are constructed based on B=999 replicates with nominal coverages 1 − ϑ equal

to 0.90, 0.95 and 0.99. After this, we compute the empirical coverage by counting the number of future values inside
the corresponding intervals as (1 − ϑ)∗ = {LC,B ≤ CT+ j ≤ UC,B}. In addition we compute left and right coverage as the
proportion of predictions falling below LC,B and above UC,B, respectively.
Results are reported in Table 7 as averages across univariate variance (left panel) and covariance (right panel) series.
First of all, we can notice that results are qualitatively similar across the two panels. It emerges that the intervals for
future volatilities and covolatilities at multiple-steps ahead have average coverages close to the nominal values, and
that their performance improves as the sample size increases from 1000 to 2000 observations.

The table also shows that the coverage rates depend on the forecast horizon, and that they have a tendency to de-
crease as horizons increase. This comes as a consequence of the parameter estimation variability that is not accounted
for, as well as from the addition of error uncertainty. However, even if for h > 2 there is a slight undercoverage,
coverage values are never below their nominal levels by more than 2.7%, and this happens irrespective of the forecast
horizon or the considered sample size.

Overall, Monte Carlo results show that the proposed bootstrap procedure is capable of generating accurate point
and interval forecasts from the MMReDCC model.

6. Empirical Applications

This section contains two empirical applications. The first application provides the estimation results for the IMP
estimator in comparison with the standard QML estimator in the ideal case where both can be computed. The second
one is performed in a large dimensional system and aims at evaluating both the full-sample fit of the model and its
forecasting performance. Specifically, we evaluate the ability of the MMReDCC model to provide accurate multi-
steps-ahead covariance predictions against existing competitors not accounting for time-varying long term dynamics.

6.1. Small sample accuracy comparison
In small dimensional applications, according to Table 1, the QMLE is applicable and represents the most efficient

estimator, at least asymptotically. Hence, a simple way to evaluate the in-sample performance of the proposed ap-
proach, is to compare the estimates provided by the IMP method to those obtained by maximizing the quasi-likelihood
(QL) with respect to the full parameter vector. To this purpose, we fix the cross-sectional dimension equal to ten assets
and fit the MMReDCC model to three different datasets. An overview of the data being used is given in the first table
in the Appendix. The first dataset comprises the assets used in Bauwens et al. (2016) and includes series of daily real-
ized covariance matrices estimated using five minute intraday returns over the period February 2001 until December
2009 (2242 observations); the second set is made up of some of the most liquid equities of the S&P 500 traded from
October 1997 to July 2008 (2524 observations), while the last one consists of an arbitrarily selected subsample of
assets from the dataset used in the work of Boudt et al. (2014). The latter contains series of daily realized covariance
matrices obtained with the CholCov estimator over the period January 2007–December 2012 (1499 trading days)6.
As already mentioned, the choice of the realized estimator is not an issue as the model can be fitted to any series of
realized variance-covariance matrices as long as they are PDS.

As suggested by a referee, the IMP estimator could also be used to provide accurate initial values for direct QML
estimation leading to a reduction of the number of iterations needed to reach convergence and, hence, to substantial
computational savings. In this spirit we also consider the additional estimator, denoted as IMP(+), obtained by
performing one iteration of the one-step QL optimization, taking the IMP estimate as starting point.

Estimation results for the MMReDCC model parameters by the QML, IMP and IMP(+) estimators are collected
in Panel A of Table 8. In the three datasets considered, all methods appear to deliver similar estimates. Short term
GARCH coefficients tend to be quite homogeneous across assets and generally significant; the same applies to the
short term correlation estimates. As for the parameters driving the long term component, it can be noticed that the
estimated θ and ω coefficients are regularly lower for the IMP than for the QML method. This is in line with the
prevailing negative bias found in the simulation study. Coming to the analysis of the maximized quasi log-likelihood

6Our analysis focuses on open-to-close covariance matrices, whereby noisy overnight returns have not been included in the construction of the
estimators. We refer to the cited papers for further details.
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Table 7: Prediction intervals
The table reports prediction intervals for variances (left panel) and covariances (right panel) of MMReDCC model across 1000 simulations.

Variances
n Lead T Nominal Average Av.cov. Av.cov.

time coverage coverage below above
5 2 1000 0.90 0.891 0.054 0.054

0.95 0.945 0.026 0.029
0.99 0.978 0.008 0.014

2000 0.90 0.894 0.053 0.053
0.95 0.951 0.024 0.025
0.99 0.982 0.005 0.012

10 1000 0.90 0.878 0.064 0.059
0.95 0.932 0.036 0.032
0.99 0.971 0.012 0.017

2000 0.90 0.882 0.057 0.061
0.95 0.935 0.030 0.034
0.99 0.973 0.009 0.018

20 1000 0.90 0.873 0.062 0.065
0.95 0.932 0.033 0.035
0.99 0.977 0.006 0.017

2000 0.90 0.874 0.067 0.065
0.95 0.923 0.035 0.041
0.99 0.970 0.008 0.022

10 2 1000 0.90 0.891 0.053 0.057
0.95 0.940 0.028 0.031
0.99 0.979 0.007 0.015

2000 0.90 0.895 0.054 0.052
0.95 0.948 0.027 0.025
0.99 0.983 0.005 0.013

10 1000 0.90 0.876 0.060 0.064
0.95 0.933 0.030 0.037
0.99 0.975 0.007 0.018

2000 0.90 0.883 0.060 0.057
0.95 0.938 0.030 0.030
0.99 0.978 0.006 0.014

20 1000 0.90 0.873 0.065 0.066
0.95 0.930 0.033 0.037
0.99 0.975 0.007 0.018

2000 0.90 0.876 0.060 0.063
0.95 0.930 0.033 0.037
0.99 0.974 0.008 0.017

20 2 1000 0.90 0.892 0.049 0.059
0.95 0.943 0.025 0.032
0.99 0.981 0.006 0.014

2000 0.90 0.892 0.051 0.057
0.95 0.946 0.026 0.029
0.99 0.983 0.005 0.012

10 1000 0.90 0.880 0.055 0.065
0.95 0.935 0.029 0.036
0.99 0.976 0.007 0.017

2000 0.90 0.883 0.054 0.063
0.95 0.936 0.028 0.036
0.99 0.975 0.008 0.017

20 1000 0.90 0.877 0.060 0.063
0.95 0.933 0.032 0.036
0.99 0.972 0.009 0.019

2000 0.90 0.877 0.059 0.064
0.95 0.933 0.033 0.034
0.99 0.977 0.007 0.016

50 2 1000 0.90 0.899 0.045 0.056
0.95 0.950 0.023 0.027
0.99 0.985 0.005 0.010

2000 0.90 0.897 0.050 0.053
0.95 0.948 0.025 0.026
0.99 0.985 0.005 0.010

10 1000 0.90 0.888 0.051 0.061
0.95 0.940 0.027 0.033
0.99 0.979 0.007 0.015

2000 0.90 0.888 0.056 0.057
0.95 0.941 0.028 0.030
0.99 0.980 0.007 0.013

20 1000 0.90 0.879 0.054 0.067
0.95 0.934 0.029 0.037
0.99 0.977 0.007 0.017

2000 0.90 0.880 0.057 0.063
0.95 0.935 0.031 0.034
0.99 0.977 0.007 0.016

Covariances
n Lead T Nominal Average Av.cov. Av.cov.

time coverage coverage below above
5 2 1000 0.90 0.897 0.052 0.051

0.95 0.946 0.028 0.026
0.99 0.981 0.007 0.011

2000 0.90 0.906 0.046 0.048
0.95 0.954 0.025 0.021
0.99 0.982 0.007 0.011

10 1000 0.90 0.877 0.061 0.062
0.95 0.930 0.035 0.035
0.99 0.974 0.010 0.016

2000 0.90 0.882 0.060 0.058
0.95 0.935 0.035 0.031
0.99 0.978 0.010 0.013

20 1000 0.90 0.874 0.065 0.061
0.95 0.930 0.036 0.036
0.99 0.973 0.010 0.017

2000 0.90 0.879 0.064 0.057
0.95 0.933 0.036 0.034
0.99 0.971 0.012 0.018

10 2 1000 0.90 0.889 0.056 0.055
0.95 0.943 0.028 0.029
0.99 0.980 0.007 0.013

2000 0.90 0.895 0.053 0.053
0.95 0.946 0.028 0.027
0.99 0.981 0.007 0.012

10 1000 0.90 0.883 0.060 0.058
0.95 0.935 0.032 0.033
0.99 0.975 0.010 0.016

2000 0.90 0.880 0.058 0.060
0.95 0.935 0.032 0.032
0.99 0.977 0.009 0.014

20 1000 0.90 0.873 0.064 0.063
0.95 0.932 0.037 0.035
0.99 0.973 0.011 0.016

2000 0.90 0.870 0.063 0.064
0.95 0.934 0.035 0.038
0.99 0.972 0.010 0.017

20 2 1000 0.90 0.886 0.057 0.057
0.95 0.939 0.030 0.031
0.99 0.979 0.007 0.013

2000 0.90 0.887 0.057 0.056
0.95 0.940 0.030 0.030
0.99 0.979 0.007 0.013

10 1000 0.90 0.876 0.062 0.062
0.95 0.931 0.034 0.034
0.99 0.975 0.009 0.016

2000 0.90 0.876 0.061 0.062
0.95 0.932 0.034 0.034
0.99 0.975 0.009 0.016

20 1000 0.90 0.873 0.066 0.068
0.95 0.930 0.037 0.038
0.99 0.970 0.011 0.018

2000 0.90 0.875 0.065 0.066
0.95 0.931 0.037 0.037
0.99 0.972 0.011 0.017

50 2 1000 0.90 0.886 0.057 0.057
0.95 0.939 0.030 0.030
0.99 0.979 0.007 0.013

2000 0.90 0.889 0.055 0.056
0.95 0.942 0.029 0.029
0.99 0.980 0.007 0.013

10 1000 0.90 0.874 0.063 0.063
0.95 0.931 0.034 0.035
0.99 0.975 0.009 0.016

2000 0.90 0.878 0.061 0.061
0.95 0.934 0.033 0.033
0.99 0.977 0.008 0.015

20 1000 0.90 0.864 0.068 0.068
0.95 0.923 0.038 0.038
0.99 0.971 0.011 0.018

2000 0.90 0.868 0.066 0.066
0.95 0.926 0.037 0.036
0.99 0.973 0.010 0.017
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values, it can be seen that, as expected, the QMLE returns the highest QL value for all the datasets, but those obtained
by the IMP estimator are very close, and the gap never exceeds 0.04% in relative terms. The IMP(+) further reduces
the discrepancy but its contribution is as small as 0.014% on average, thus far from impressive.

The bottom line of Panel A reports test statistics and corresponding p-values of a score test (ST) performed to
assess convergence of the IMP and IMP(+) estimators. In practice we test the null hypothesis that ψ∗ = 0 in the
unrestricted model parameterized by ψ = ψ̂M +ψ∗ where ψ̂M denotes the estimate of ψ obtained by estimation method
M. In practice ψ∗ can be interpreted as the bias potentially affecting the estimated ψ in case of lack of convergence of
the IMP and IMP(+) algorithms. In order to double check our results the test is repeated for the QML estimator. The
null is accepted in all cases. This result is confirmed by figure 2 that compares the values of the QL function recorded
for the IMP estimator in each iteration (continuous thin line) with the maximum obtained by direct maximization
of the QL function (continuous thick line) and by the IMP(+) estimator (dotted line). The plot shows that the IMP
algorithm increases the value of the QL function at each step monotonically converging to a value which is very close
to the maximum yielded by the direct QML estimator.

Finally, Panel B of Table 8 provides further information on the performance of the estimators measured in terms
of mean, standard deviation, first (Q1) and third (Q3) quantiles of the estimated conditional variance, covariance and
correlation series. Furthermore, to gain deeper insight on the practical impact that the choice of the estimation algo-
rithm can have on risk management applications, the comparison is extended to the estimated conditional variances
of the equally weighted portfolio returns. In general, the distribution of the estimated series do not appear to be very
sensitive to the estimation method adopted. The most sizeable differences are observable between QML and IMP(+)
estimated conditional variances and covariances of Dataset 3. Nevertheless, the discrepancy becomes negligible if we
focus on conditional correlations and, in particular, on portfolio volatility which is the main quantity of interest for
risk management applications.

Figure 2: The figure shows the log-likelihood value at the maximum (y-axis) achieved by 1-step QML (dotted line), IMP (continuous thin line) and IMP(+) (continuous
thick line), for each of the considered datasets. The number of iterations needed for the IMP optimization to converge is given on the x-axis (8 for Dataset 1, 3 for
Dataset 2 and 9 for Dataset 3).
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6.2. Forecasting performance
In this subsection we push the analysis to higher dimensions, with the aim of assessing the usefulness of the

MMReDCC model in a forecasting exercise. As benchmarks we consider the consistent RDCC (cRDCC) model of
Bauwens et al. (2012) as the closest competitor and a simple Exponentially Weighted Moving Average (EWMA)
model. The EWMA predictor appears a natural candidate due to its widespread diffusion among practitioners and in
risk management systems like RiskMetrics. If applied to series of daily realized covariance matrices, it is defined by

S t = (1 − λ)Ct−1 + λS t−1,

where the λ parameter is set equal to the value 0.94 (see also Golosnoy et al. (2012)).
On the other hand, the choice of the cRDCC as a benchmark is supported by two main reasons. First, it assumes

that conditional volatilities and correlations mean revert to constant quantities, thus it can be considered as a simplified
version of the MMReDCC model despite not being formally nested in it. Second, the findings of Boudt et al. (2014)
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Table 8: Application I. In-sample comparison
Panel A shows parameter estimates with corresponding standard errors in brackets for each of the estimators employed and the three datasets considered (see first
table in the Appendix). IMP(+) denotes results achieved after one iteration of the one-step QL optimization, taking the IMP estimate as starting point. The last
two rows respectively report the log-likelihood (Loglik) values at the maximum and Score test (ST) statistics with corresponding p-values in brackets. Panel B
reports summary statistics for the estimated series of volatilities (Vol), covariances (Cov) and correlations (Corr) across estimators and datasets. The properties of
the volatilities (Portf. vol) of the n-dimensional equally weighted portfolios constructed using the estimated conditional covariance matrices are also compared. The
number of in-sample observations is 2242 for Dataset 1, 2524 for Dataset 2 and 1499 for Dataset 3.

Dataset 1 Dataset 2 Dataset 3

Panel A: Parameter estimates

QML IMP IMP(+)
γi δi γi δi γi δi

0.35
(0.10)

0.60
(0.03)

0.34
(0.06)

0.59
(0.03)

0.37
(0.15)

0.55
(0.08)

0.34
(0.38)

0.58
(0.08)

0.31
(0.76)

0.60
(0.05)

0.33
(0.86)

0.58
(0.07)

0.41
(0.04)

0.57
(0.06)

0.40
(0.03)

0.52
(0.05)

0.41
(0.05)

0.51
(0.09)

0.43
(0.06)

0.53
(0.06)

0.38
(0.04)

0.49
(0.06)

0.41
(0.06)

0.48
(0.07)

0.37
(0.05)

0.49
(0.05)

0.37
(0.03)

0.49
(0.04)

0.40
(0.05)

0.48
(0.06)

0.34
(0.05)

0.65
(0.12)

0.32
(0.04)

0.61
(0.06)

0.33
(0.06)

0.60
(0.06)

0.40
(0.05)

0.52
(0.11)

0.42
(0.04)

0.51
(0.05)

0.44
(0.06)

0.49
(0.10)

0.47
(0.04)

0.43
(0.04)

0.45
(0.03)

0.40
(0.05)

0.45
(0.04)

0.40
(0.05)

0.31
(0.06)

0.61
(0.08)

0.31
(0.04)

0.59
(0.05)

0.32
(0.04)

0.57
(0.08)

0.34
(0.06)

0.55
(0.09)

0.31
(0.04)

0.58
(0.06)

0.35
(0.05)

0.56
(0.08)

α β α β α β
0.07
(0.02)

0.91
(0.08)

0.08
(0.01)

0.88
(0.06)

0.07
(0.02)

0.88
(0.08)

θ ω θ ω θ ω
0.88
(0.01)

4.57
(0.01)

0.83
(0.00)

4.22
(0.01)

0.87
(0.00)

5.69
(0.03)

Loglik Loglik Loglik
−22592 −22601 −22597

ST ST ST
−0.001

(1.00)
−0.026

(1.00)
−0.001

(1.00)

QML IMP IMP(+)
γi δi γi δi γi δi

0.12
(0.04)

0.88
(0.19)

0.10
(0.06)

0.85
(0.10)

0.09
(0.03)

0.82
(0.15)

0.32
(0.15)

0.80
(0.18)

0.33
(0.07)

0.83
(0.12)

0.29
(0.05)

0.82
(0.18)

0.33
(0.08)

0.61
(1.01)

0.28
(0.07)

0.55
(0.10)

0.33
(0.30)

0.52
(0.43)

0.26
(0.03)

0.43
(0.18)

0.24
(0.06)

0.41
(0.01)

0.28
(0.12)

0.38
(0.06)

0.46
(0.08)

0.18
(0.09)

0.49
(0.14)

0.23
(0.05)

0.50
(0.09)

0.22
(0.06)

0.35
(0.14)

0.76
(0.25)

0.34
(0.20)

0.79
(0.28)

0.35
(0.15)

0.78
(0.20)

0.43
(0.09)

0.52
(0.09)

0.23
(0.10)

0.44
(0.62)

0.31
(0.10)

0.36
(0.09)

0.45
(0.21)

0.72
(0.17)

0.43
(0.16)

0.70
(0.01)

0.45
(0.19)

0.68
(0.03)

0.18
(0.06)

0.59
(0.19)

0.16
(0.15)

0.63
(0.04)

0.20
(0.17)

0.60
(0.13)

0.43
(0.11)

0.36
(0.09)

0.47
(0.17)

0.27
(0.01)

0.48
(0.12)

0.28
(0.10)

α β α β α β
0.05
(0.01)

0.86
(0.16)

0.04
(0.01)

0.89
(0.10)

0.05
(0.00)

0.87
(0.11)

θ ω θ ω θ ω
0.91
(0.01)

3.67
(0.02)

0.88
(0.02)

2.91
(0.07)

0.90
(0.06)

3.46
(0.19)

Loglik Loglik Loglik
162196 162143 162180

ST ST ST
0.103
(1.00)

0.345
(1.00)

0.290
(1.00)

QML IMP IMP(+)
γi δi γi δi γi δi

0.18
(0.07)

0.75
(0.06)

0.18
(0.16)

0.75
(0.07)

0.17
(0.09)

0.75
(0.05)

0.23
(0.20)

0.69
(0.04)

0.23
(0.90)

0.69
(0.05)

0.24
(0.92)

0.68
(0.04)

0.24
(0.04)

0.62
(0.06)

0.25
(0.16)

0.62
(0.21)

0.25
(0.06)

0.61
(0.09)

0.20
(0.05)

0.67
(0.07)

0.19
(0.06)

0.69
(0.07)

0.20
(0.07)

0.68
(0.06)

0.20
(0.06)

0.60
(0.09)

0.21
(0.11)

0.65
(0.12)

0.20
(0.06)

0.59
(0.10)

0.18
(0.11)

0.69
(0.20)

0.18
(0.09)

0.73
(0.13)

0.19
(0.10)

0.68
(0.18)

0.15
(0.09)

0.68
(0.23)

0.14
(0.08)

0.74
(0.19)

0.16
(0.10)

0.66
(0.23)

0.18
(0.07)

0.75
(0.16)

0.18
(0.30)

0.75
(0.40)

0.18
(0.08)

0.75
(0.16)

0.18
(0.10)

0.74
(0.27)

0.17
(0.14)

0.75
(0.23)

0.17
(0.20)

0.74
(0.50)

0.14
(0.04)

0.78
(0.05)

0.14
(0.06)

0.80
(0.10)

0.14
(0.04)

0.78
(0.05)

α β α β α β
0.01
(0.00)

0.80
(0.10)

0.01
(0.00)

0.88
(0.05)

0.01
(0.00)

0.77
(0.05)

θ ω θ ω θ ω
0.84
(0.02)

5.52
(1.58)

0.81
(0.18)

5.16
(0.57)

0.82
(0.01)

5.56
(0.44)

Loglik Loglik Loglik
−28567 −28568 −28567

ST ST ST
0.000
(1.00)

0.030
(1.00)

0.001
(1.00)

Panel B: Properties of estimated series
QML IMP IMP(+)

Vol mean 2.98 3.06 3.14
std 5.70 5.84 5.89
Q1 0.70 0.70 0.74
Q3 2.60 2.69 2.78

Cov mean 1.20 1.24 1.26
std 2.45 2.47 2.49
Q1 0.20 0.21 0.22
Q3 1.03 1.09 1.10

Corr mean 0.37 0.39 0.38
std 0.10 0.10 0.10
Q1 0.30 0.31 0.31
Q3 0.44 0.45 0.44

Portf. mean 0.95 0.97 0.99
vol std 0.69 0.69 0.69

Q1 0.52 0.53 0.54
Q3 1.10 1.13 1.14

QML IMP IMP(+)
Vol mean 0.36 0.36 0.39
(e-03) std 0.87 0.90 0.95

Q1 0.10 0.11 0.12
Q3 0.41 0.43 0.47

Cov mean 0.07 0.07 0.07
(e-03) std 0.15 0.19 0.20

Q1 0.02 0.03 0.03
Q3 0.08 0.09 0.09

Corr mean 0.27 0.27 0.26
std 0.13 0.14 0.13
Q1 0.18 0.17 0.17
Q3 0.35 0.36 0.35

Portf. mean 0.01 0.01 0.01
vol std 0.38 0.38 0.38
(e-02) Q1 0.60 0.62 0.64

Q3 1.10 1.12 1.15

QML IMP IMP(+)
Vol mean 17.33 12.83 11.75

std 23.93 19.86 18.35
Q1 4.38 3.30 3.07
Q3 12.19 11.15 10.23

Cov mean 7.16 5.20 4.81
std 8.94 7.03 6.53
Q1 1.85 1.23 1.14
Q3 7.17 5.21 4.76

Corr mean 0.42 0.42 0.42
std 0.08 0.09 0.09
Q1 0.36 0.35 0.35
Q3 0.48 0.48 0.48

Portf. mean 2.29 2.10 2.02
vol std 1.40 1.25 1.20

Q1 1.47 1.20 1.16
Q3 2.63 2.41 2.30
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show that the cRDCC model favorably compares with some widely used competitors, such as the HEAVY (Noureldin
et al. (2012)) and the cDCC (Aielli (2013)) model, in forecasting Value-at-Risk. In order to estimate the cRDCC in
high dimension, we apply a three stage QML estimation procedure as suggested by Bauwens et al. (2012), where the
constant long term covariance matrix is consistently targeted by the unconditional covariance. This drastically reduces
the number of parameters to be estimated to 2n + 2.

The dataset, also used by Laurent et al. (2012), contains realized covariance matrices based on intraday returns
computed from 6-minute intervals last mid-quotes of 46 assets traded in the NYSE and NASDAQ over the period
January 5, 1999 to November 14, 2008, for a total of 2483 observations.

Table 9 reports parameter estimates obtained by fitting the MMReDCC and cRDCC models over the full sample
period. As emerges from Panel A, the MMReDCC outperforms the cRDCC in terms of the AIC and BIC criteria,
which are both minimized for the MMReDCC. The univariate GARCH(1,1) parameters γ̄ and δ̄, reported in averaged
values across series, largely agree with each other, while the correlation estimates are slightly different across the two
models, with the cRDCC showing a higher level of persistence.

To closely examine the difference in the fit of the models, consider the estimated conditional correlations between
two representative pairs of stocks. The first, presented in the upper panel of Figure 3, includes two financial assets:
American Express (AXP) and Bank of America (BAC), while the second pair, in the lower panel, includes stocks
from different sectors, i.e. McDonald’s (MCD) and Wells & Fargo (WFC). In general the correlations returned by the
MMReDCC model appear to be characterized by more pronounced fluctuations. At the beginning of the sample the
correlation paths from the two models evolve around the same mean level while at the burst of the dot-com bubble
in 2002 the MMReDCC correlations appear to be characterized by a positive level shift which is not present in the
cRDCC series. For the reminder of the sample the cRDCC correlations are on average lower than those obtained from
the MMReDCC. Given the close similarity between the models, this can be reasonably explained by the fact that the
parameters θ and ω driving the long term (co)volatilities dynamics of the MMReDCC allow for a higher flexibility of
the model and consequently for a better responsiveness of correlations in periods of pronounced market volatility.

Table 9: Application II. Full sample estimates and implemented loss functions
Panel A reports full sample estimates from the MMReDCC and cRDCC model, where γ̄ and δ̄ are averaged across the n series. AIC and BIC criteria have been
rescaled by the number of observations. Panel B contains the loss functions chosen to evaluate the models forecasting ability. S t denotes the predicted conditional
covariance matrix while Ct is the 6-minute realized measure chosen as proxy for the latent covariance matrix.

Panel A: Full sample estimates

MMReDCC cRDCC

γ̄ 0.381
(0.087)

0.373
(0.180)

δ̄ 0.543
(0.110)

0.551
(0.201)

α 0.016
(0.001)

0.020
(0.005)

β 0.950
(0.002)

0.974
(0.007)

θ 0.761
(0.027)

ω 3.278
(0.785)

Loglik 787304 683817

AIC -633 -617

BIC -630 -616

Panel B: Loss functions

ST Stein tr(S −1
t Ct) − log |S −1

t Ct | − n

vND von Neumann Divergence tr
(
Ct log Ct −Ct log S t −Ct + S t

)
QLIK Qlike log |S t | + tr

(
S −1

t Ct

)
To determine whether the MMReDCC model can lead to gains in forecasting accuracy we compute predictions of

the conditional covariance matrix of daily returns at 1, 5, 10 and 20 steps-ahead making use of the bootstrap procedure
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Figure 3: Estimated conditional correlation of MCD-WFC (upper panel) and of AXP-BAC (lower panel).
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explained in Section 5.7 A similar approach is also applied to the cRDCC model, while predictions from the EWMA
are obtained analytically, since this model implies that E(Ct+h|=t) = E(Ct+h−1|=t). To shorten computational time,
estimation is performed using a fixed-rolling window scheme with window length equal to 1483 observations that
shifts forward every twenty days, over which parameter estimates are kept fixed. The number of re-estimations of
each model is equal to fifty, and the out-of-sample evaluation is performed on 1000 trading days.

The forecasting period is characterized by drastic changes in volatility dynamics, as emerges from the summary
statistics given in the second table in the Appendix. To better analyze to what extent this impacts on the performance
of the models, we break the evaluation sample into two sub-samples. Their differences can be visualized by looking
at Figure 4, which shows the realized variance of the equally weighted portfolio made of the 46 assets used in the
application. The upper panel spans the period from November, 2004 until end of June, 2007, where the market
experiences a situation of stability after the turmoil of the 2000-2003 dot-com bubble. On the other hand, the period
from July, 2007 to November, 2008, highlighting a widespread turbulence on the market, coincides with the burst of
the subprime financial crisis which reaches its peak with the collapse of Lehman Brothers in September 2008. During
the last four months of the latter sub-sample, the unconditional volatility of the portfolio is roughly ten times higher
than over the first sub-period.

The comparison of the models forecasting ability is performed using the consistent8 loss functions defined in
Panel B of Table 9, for which we report averaged values over the two out-of-sample periods considered. The test
of Giacomini and White (2006) (GW) is used to examine the relative performance of the MMReDCC model with
respect to the cRDCC and the EWMA. Namely, for each loss function L, the loss differential at time t is denoted
as δt = L(Ct+h, S MMReDCC

t+h|t ) − L(Ct+h, S benchmark
t+h|t ), where Ct is the the 6-minute realized covariance chosen as proxy

for the true matrix. This difference is expected to be zero if neither of the models is superior, otherwise, negative
(positive) values correspond to a superior forecasting performance of the MMReDCC (benchmark). In addition,
consistently with the in-sample analysis performed in Section 6.1, we also assess, using the univariate version of the
QLIK loss function9, the ability of the different models to accurately predict the volatility of an equally weighted

7We performed the same exercise using a number of bootstrap replicates equal to 1000, 2000 and 5000, without achieving qualitatively different
results. Those we report are for B = 5000.

8The term consistent is used according to Laurent et al. (2013).
9As given by Patton (2011), the formula is QLIKt = log(S ii,t) +

Cii,t
S ii,t

.
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portfolio including all the 46 assets.
The null of equal predictive accuracy is implemented as the following t-statistic

GW =
√

T − τ + h
∑T

t=τ+h δt√
avar

(∑T
t=τ+h δt

) ,
and the Newey-West estimator is used to consistently estimate the long-run variance of

∑T
t=τ+h δt.

Table 10 shows the resulting average loss differences summarized by horizon. The value achieved by either the
EWMA or the cRDCC is in italic if the model is favored by the GW test, in bold if the test favors the MMReDCC or
underlined if the test is indecisive.

Figure 4: Equally weighted portfolio daily realized variance
The figure shows the daily realized variance over the forecasting period of the equally wighted portfolio composed of the 46 assets used in the empirical
application and listed in Table A.13. The sample is divided into a more calm period (upper panel, 650 observations) and a more volatile period (lower
panel, 350 observations).
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According to Panel A, the MMReDCC model is not leading to particularly impressive gains in forecasting accu-
racy compared to the two benchmarks. When focusing on direct evaluation of forecasts of the whole RC matrix, the
cRDCC is prevailing at the shortest horizon according to all loss functions, while for h > 1 they fail to point towards
a unique winner as the overall performance of the models is pretty similar and the test is often inconclusive. Despite
being the simplest model, the EWMA is found to perform no worse than the other two and to be preferred twice by
the vND over the MMReDCC. Considering that the period covered by Panel A is characterized by a relatively small
and slow-moving market volatility, these results are probably not surprising for two reasons. First, it is known that
in such circumstances highly parameterized sophisticated models suffer from additional parameter uncertainty, thus
being more heavily penalized than model featuring simple parameterizations. Second, when the underlying process
exhibits smooth dynamics, it is more complicated for the MMReDCC model to disentangle the different volatility
components, thus suggesting that accurate predictions can be obtained by employing models that do not necessarily
account for time-varying long run levels.
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As we move to analyze the results in Panel B, the situation is quickly reversed. The cRDCC is still minimizing
two out of three loss functions at the one-step horizon, but in all other cases it is evident that, whenever the models
predictive abilities can be distinguished, the GW test decides in favor of the MMReDCC. The over-performance of the
MMReDCC is particularly strong at the 20-day horizon, when it delivers the optimal covariance forecasts according
to the whole set of losses.

A slightly different situation arises when we move to the analysis of portfolio volatility forecasts. In this case the
forecasting performance of the MMReDCC model appears to be more stable over time. In period A, at the 1-day
horizon the MMReDCC is outperforming the EWMA and doing not significantly worse than the cRDCC. At longer
horizons, it is always prevailing over its competitors, the only exception being represented by the CRDCC, for which
at horizon 20 we cannot reject the null of equal predictive ability. In period B, again the worst performance is recorded
for the 1-day horizon but, for longer horizons, the MMReDCC is performing significantly better than its competitors
in all cases except for the 10-day horizon when the comparison with the EWMA result is indecisive.

Table 11 offers a closer inspection of the models relative performance by reporting GW test results across uni-
variate (co)volatilities and correlations. For sake of space, only the QLIK case is considered. Each panel of the
table records the number of series (out of 1081 (co)volatilities and 1035 correlations) for which the test favors the
MMReDCC, one of the benchmarks or gives no decision. Results are mostly in accordance with those achieved for
the whole covariance matrix and stress the evidence that in periods of calm (Panel A) there is almost no benefit from
employing the MMReDCC model for (co)volatility prediction. The gain in terms of correlations is marginal and only
achieved with respect to the EWMA. On the other hand, sensibly better results are obtained over the final period (Panel
B), both in terms of (co)volatility and correlation dynamics. Noticeably, the number of cases favoring the MMReDCC
increases with h and becomes striking already at h = 10.

Overall, the main message we can get from these empirical results is that while constant long-term models may
be preferred in moderately volatile time periods, the benefits from the MMReDCC model can be fully appreciated
in periods of market instability. In those cases, the flexibility of the model assures a higher responsiveness and more
reliable out-of-sample forecasts.

Table 10: Multi-step-ahead forecast evaluation
The table reports averaged values of the loss functions listed in Table 9. Results are reported across the out-of-sample period divided into a more calm period (Panel
A, November 2004 to July 2007) and a more turbulent period (Panel B, July 2007 to November 2008). In the last row of each panel we also report the averaged QLIK
of the out-of-sample variance of the equally weighted portfolio obtained using the predicted covariance matrices of the models. For each horizon, we perform pairwise
Giacomini-White (GW) tests for the significance at 5% level of the loss difference between the MMReDCC and each benchmark: the competitor is in italic if it is
favored by the test, in bold if the MMReDCC is favored and underlined if the test is indecisive.

Horizon 1 Horizon 5 Horizon 10 Horizon 20

MMReDCC EWMA cReDCC MMReDCC EWMA cReDCC MMReDCC EWMA cReDCC MMReDCC EWMA cReDCC

PANEL A: 29-11-2004/01-07-2007

ST 37.37 37.52 36.56 38.08 38.62 38.39 38.80 39.24 39.45 39.05 40.01 41.43

vND 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004

QLIK -386.62 -386.46 -386.43 -385.74 -385.20 -385.43 -385.02 -384.58 -384.38 -383.96 -383.79 -382.38

Portf. vol -9.69 -9.55 -9.69 -9.75 -9.49 -9.70 -9.789 -9.48 -9.75 -9.83 -9.46 -9.84

PANEL B: 02-07-2007/14-11-2008

ST 40.12 43.88 39.29 48.03 50.04 49.75 52.76 54.38 58.05 63.08 69.28 72.25

vND 0.023 0.026 0.025 0.030 0.032 0.033 0.043 0.047 0.044 0.045 0.054 0.054

QLIK -338.75 -338.00 -342.58 -337.35 -332.04 -335.33 -328.48 -327.86 -324.19 -318.29 -312.09 -309.12

Portf. vol -7.57 -7.43 -7.69 -7.70 -7.41 -7.34 -7.61 -7.37 -6.88 -7.16 -6.72 -5.88

7. Conclusions

The estimation procedure proposed in the paper allows to extend the range of applicability of the MMReDCC
model to large dimensional portfolios such as those encountered in risk management practice. In order to reach
this objective, we face two well-known challenges in multivariate time series modeling, namely high-dimensional
estimation and multi-step ahead forecasting.
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Table 11: GW test results across series
Unconditional Giacomini-White (GW) test results at 5% level of significance using the QLIK function. Each panel of the table records the number of series for
which the MMReDCC is favored, for which there is no decision and for which one of the benchmarks is favored. Results are differentiated between conditional
(co)volatilities (1081 series) and correlations (1035 series).

(Co)volatilities Correlations

PANEL A: 29-11-2004/01-07-2007

Horizon Favors MMReDCC Indecisive Favors B Model B

1 155 732 194 EWMA

24 447 610 cRDCC

5 121 833 127 EWMA

20 369 692 cRDCC

10 33 948 100 EWMA

37 356 688 cRDCC

20 51 850 180 EWMA

77 512 492 cRDCC

Favors MMReDCC Indecisive Favors B Model B

62 669 304 EWMA

87 522 426 cRDCC

89 882 64 EWMA

114 427 494 cRDCC

72 906 57 EWMA

213 503 319 cRDCC

118 877 40 EWMA

108 605 322 cRDCC

PANEL B: 02-07-2007/14-11-2008

Horizon Favors MMReDCC Indecisive Favors B Model B

1 41 853 187 EWMA

5 187 889 cRDCC

5 106 910 65 EWMA

429 620 32 cRDCC

10 198 883 0 EWMA

739 340 2 cRDCC

20 193 888 0 EWMA

835 246 0 cRDCC

Favors MMReDCC Indecisive Favors B Model B

130 689 133 EWMA

266 627 142 cRDCC

78 911 46 EWMA

502 505 28 cRDCC

217 791 27 EWMA

567 454 14 cRDCC

339 687 9 EWMA

626 405 4 cRDCC

To face the former challenge, we implement a feasible estimation procedure, the Iterative Moment based Profiling
(IMP) algorithm. It profiles out the parameters of the scale MIDAS intercept matrix and iteratively maximizes the
likelihood in terms of the other parameters of interest. Whilst not providing an asymptotic inference theory for this
method, we investigate the finite sample properties of the estimator via a simulation study, which demonstrates that
the IMP estimator delivers accurate estimates irrespective of the initialization method employed. We also compare
the one-step QML and IMP estimators on real data sets of small dimension (ten) and find that not only the two
estimators deliver very similar in-sample estimates, but also that the loss of the IMP in terms of likelihood values can
be considered as negligible. Another application illustrates the usefulness of the IMP algorithm when the model has
to be fitted to high dimensional realized covariance matrices. In this respect, the IMP algorithm is reliable from the
computational point of view and easy to implement despite the large number of parameters involved in the MMReDCC
model. Given its flexibility, we fairly believe that it could be applied to datasets of larger dimensions.

As regards the second challenge, we develop a bootstrap approach to the generation of multi-step-ahead predic-
tions. In an application to a portfolio of forty-six stocks, we provide compelling evidence that the MMReDCC model
is useful for out-of-sample forecasting purposes in periods of pronounced market volatility. If compared with existing
multivariate competitors not accounting for time-varying long-term dynamics, the MMReDCC is found to deliver
the most accurate predictions especially at long-term horizons, thus indicating the importance of allowing for a more
flexible long-run component.
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Appendix A. Descriptive statistics

Table A.12: Descriptive statistics of daily realized variances used in Application I
The table reports descriptive statistics of daily realized variances of the assets included in Dataset 1, 2 and 3 used in the first empirical application. Mean, maximum,
minimum and standard deviation for the assets comprised in Dataset 2 multiplied by 1000.

Symbol Issue name Mean Max. Min. Std.dev. Skewness Kurtosis
Dataset 1: February, 2001 – December, 2009

AA Alcoa 5.458 277.308 0.074 16.811 7.178 72.570
AXP American Express 5.055 176.478 0.112 11.094 7.529 84.686
BAC Bank of America 1.934 57.543 0.075 3.362 7.319 85.006
KO Coca Cola 2.455 43.106 0.084 3.412 4.724 36.234
DD Du Pont 2.073 115.378 0.126 4.155 13.296 288.066
GE General Electric 4.944 160.241 0.294 8.935 7.635 92.124
IBM International Business Machines 4.420 201.879 0.077 9.154 8.536 133.699
JPM JP Morgan 2.529 63.874 0.163 3.728 6.442 68.505
MSFT Microsoft 3.196 114.256 0.097 7.114 7.232 75.484
XOM Exxon Mobil 1.414 56.505 0.039 2.254 9.715 180.206

Dataset 2: May, 1997 – July, 2008
ABT Abbott Laboratories 0.383 24.941 0.020 0.859 17.264 397.922
T AT&T, 0.549 45.804 0.017 1.495 17.145 412.001
FISV Fiserv 0.783 62.858 0.027 1.559 26.114 999.133
ALL The Allstate Corporation 0.442 98.076 0.011 2.073 41.512 1934.757
GPC Genuine Parts Company 0.377 88.800 0.017 1.822 45.217 2180.553
AFL Aflac Incorporated 0.444 26.705 0.015 1.096 14.110 268.010
AA Alcoa 0.542 12.377 0.035 0.742 7.331 86.153
GE General Electric 0.397 36.683 0.013 1.148 20.633 559.319
CTL CenturyLink 0.447 68.713 0.022 1.881 24.783 775.201
C Citigroup Inc. 0.624 86.143 0.016 2.131 27.458 1036.670

Dataset 3: January, 2007 – December, 2012
ACAS American Capital 8.576 331.786 0.060 20.844 7.226 78.667
AET Aetna 8.163 771.525 0.109 26.593 17.882 467.969
AFL Aflac Incorporated 9.113 675.348 0.133 27.345 13.811 284.791
AIG American International Group 8.799 555.098 0.103 26.382 11.459 185.778
AIZ Assurant 8.613 325.167 0.101 23.230 7.712 79.082
ALL The Allstate Corporation 8.213 543.714 0.186 24.593 11.277 189.052
AMP Ameriprise Financial 7.679 264.761 0.129 17.790 6.098 54.262
AXP American Express Company 8.076 945.750 0.095 30.571 21.795 618.891
BAC Bank of America 8.450 332.586 0.130 22.830 8.458 96.824
BBT BB&T Corporation 9.093 613.826 0.087 28.801 11.267 184.837
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Table A.13: Descriptive statistics of daily realized variances used in Application II
The table reports descriptive statistics of daily realized variances of the assets used in the second empirical application, where the forecasting sample, spanning from
November 29, 2004 to November 14, 2008, is divided into a calm period (650 observations) and a more turbulent period (350 observations) including the 2008 financial
crisis. Mean, maximum, minimum and standard deviation multiplied by 1000.

Calm period: November 29, 2004 to June 28, 2007 (650 observations)
Stock Issue name Mean Max. Min. Std.dev. Skewness Kurtosis
AAPL Apple 0.311 4.466 0.026 0.300 6.122 68.790
ABT Abbott 0.104 1.130 0.015 0.081 4.861 47.537
AXP American Express 0.086 1.093 0.007 0.099 5.780 47.133
BA The Boeing Comp. 0.115 0.544 0.025 0.077 2.395 10.865
BAC Bank of America 0.069 1.306 0.012 0.071 9.337 144.620
BMY Bristol-Myers Squibb Comp. 0.127 2.026 0.018 0.129 7.536 90.933
BP BP b.l.c. 0.075 0.387 0.014 0.044 2.497 13.212
C Citigroup Inc. 0.083 1.285 0.012 0.086 6.696 72.308
CAT Caterpillar 0.160 1.147 0.030 0.123 3.299 19.873
CL Colgate-Palmolive 0.080 1.180 0.012 0.069 8.110 112.974
CSCO Cisco Systems 0.155 1.178 0.019 0.101 3.351 24.940
CVX Chevron Corp. 0.167 1.457 0.029 0.134 3.629 24.839
DELL Dell 0.175 1.419 0.024 0.129 2.959 19.761
DIS Walt Disney 0.101 0.792 0.020 0.071 3.980 30.703
EK 0.141 2.230 0.018 0.162 6.454 63.041
EXC Exelon 0.284 2.442 0.040 0.229 4.005 29.078
F Ford Motor 0.130 0.911 0.008 0.094 2.953 16.966
FDX FedEX Corp. 0.066 0.394 0.013 0.044 2.985 16.741
GE General Electric 0.130 0.698 0.018 0.085 2.409 11.870
GM General Motors 0.066 0.658 0.010 0.059 4.374 32.912
HD The Home Depot 0.130 1.066 0.017 0.100 4.439 34.441
HNZ HNZ Group 0.079 0.469 0.013 0.055 2.968 15.717
HON Honeywell 0.154 0.774 0.033 0.084 1.948 9.827
IBM International Business Machines 0.049 0.268 0.006 0.033 2.207 10.479
INTC Intel Corp. 0.094 0.660 0.014 0.080 3.586 20.288
JNJ Johnson & Johnson 0.058 0.487 0.008 0.037 3.822 34.657
JPM JP Morgan 0.096 0.904 0.014 0.065 4.909 49.496
KO Coca Cola 0.114 0.812 0.020 0.082 2.968 17.734
LLY Eli Lilly and Co. 0.088 0.823 0.010 0.070 5.304 47.783
MCD Mc’Donald 0.145 3.978 0.014 0.237 10.523 141.551
MMM 3M Company 0.174 2.270 0.035 0.190 5.990 52.372
MOT Motorola 0.089 0.463 0.018 0.055 2.370 11.641
MRK Merck & Co. 0.181 1.471 0.037 0.113 3.865 35.710
MS Morgan Stanley 0.061 0.449 0.012 0.041 3.540 24.988
MSFT Microsoft 0.109 1.980 0.015 0.105 9.948 160.134
SLB Schulumberger Limited 0.068 0.677 0.008 0.053 4.616 38.780
T AT&T 0.270 2.236 0.042 0.181 3.769 31.499
TWX Time Warner 0.302 1.371 0.021 0.190 2.005 9.043
UN Unilever 0.102 0.954 0.012 0.082 4.197 31.853
VZ Verizon Communications 0.118 4.846 0.024 0.202 20.058 463.740
ORCL Oracle Corp. 0.051 0.432 0.009 0.036 3.498 26.050
PEP Pepsico 0.095 0.889 0.017 0.077 4.104 30.453
PFE Pfizer Inc. 0.068 0.742 0.007 0.063 4.841 38.013
PG Procter & Gamble 0.091 0.769 0.013 0.062 4.153 36.416
QCOM Qualcomm 0.141 1.178 0.025 0.111 4.154 30.987
WFC Well Fargo & Co. 0.177 4.452 0.024 0.211 13.722 263.426

Turbulent period: June 29, 2007 to November 14, 2008 (350 observations)
Mean Max. Min. Std.dev. Skewness Kurtosis
0.857 10.972 0.061 1.255 4.256 26.449
0.323 8.174 0.026 0.569 8.419 106.651
1.256 31.221 0.084 2.267 7.830 92.517
0.514 5.729 0.053 0.779 3.237 15.215
1.485 27.682 0.028 2.620 4.950 38.832
0.425 8.793 0.024 0.661 6.871 77.031
0.390 6.578 0.022 0.662 4.219 28.954
2.126 101.576 0.052 6.411 11.733 171.657
0.680 11.871 0.057 1.131 4.510 33.690
0.263 8.921 0.024 0.566 10.735 157.983
0.617 11.433 0.048 0.941 5.847 55.795
0.620 16.630 0.015 1.259 7.438 82.373
0.732 14.332 0.065 1.203 6.060 55.915
0.508 11.824 0.045 0.941 6.206 63.877
0.675 13.468 0.057 1.135 5.379 50.398
2.784 198.169 0.094 11.678 13.995 227.357
0.526 7.137 0.023 0.710 4.055 27.840
0.678 9.778 0.029 1.345 4.107 23.102
0.798 16.042 0.050 1.164 7.451 87.972
0.230 3.996 0.021 0.366 4.784 38.162
0.568 13.935 0.054 1.076 6.738 72.580
0.449 8.579 0.049 0.750 5.163 44.840
0.583 7.633 0.048 0.739 4.109 29.591
0.203 5.937 0.009 0.453 7.067 77.765
1.457 23.401 0.033 2.511 4.987 34.377
0.287 10.144 0.019 0.654 10.345 149.370
0.347 8.988 0.027 0.645 7.801 95.111
0.372 14.811 0.027 0.881 12.896 207.667
0.384 6.073 0.029 0.638 4.163 26.846
0.540 15.346 0.053 1.058 8.788 113.572
4.234 183.609 0.121 15.669 8.439 83.003
0.455 4.675 0.038 0.630 3.455 17.317
0.572 6.101 0.066 0.802 3.863 20.968
0.290 13.867 0.017 0.822 13.206 214.239
0.356 6.396 0.031 0.569 4.916 41.259
0.277 12.353 0.020 0.757 12.064 186.892
0.758 19.677 0.065 1.394 8.423 103.219
1.042 16.600 0.049 1.523 4.660 36.852
0.593 15.642 0.028 1.122 7.847 95.793
0.633 11.438 0.032 1.065 4.688 36.505
0.233 4.149 0.022 0.369 4.810 40.616
0.513 13.320 0.015 0.941 8.068 100.758
1.356 20.939 0.057 2.009 4.421 32.569
0.370 9.227 0.023 0.631 8.817 114.702
0.551 18.835 0.033 1.256 9.802 132.780
0.632 18.226 0.065 1.201 9.647 134.130
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