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1 Introduction

1.1 Motivation

New ideas are the engines of economic progress. The rise in living standards depends on

the e¤ectiveness of transforming new ideas into consumer products or production processes.

Incarnating an idea into a product or a production process is by no means immediate.

Someone must have a vision or application for the idea and the know-how to implement it.

These are often people who work in areas related to the end-use of an idea.

For example, in 1849 Walter Hunt was granted a patent for the safety pin. In the abstract

for the patent, Walter Hunt wrote �(t)he distinguishing feature of the invention consist in

the construction of a pin made of a piece of wire or metal combining a spring, and a clasp

or catch, in which catch the point of the said pin is forced and by its own spring securely

retained��see Figure 1 for the drawings included with his patent application. Hunt was a

mechanic by trade and �led patents for various things, such as ice boats, machines for cutting

nails, repeating guns. In need of cash, Hunt sold his patent to W. R. Grace and Company

for about $10,000 (in today�s dollars). W. R. Grace and Company massed produced the

safety pin and made millions.

Walter Hunt by no means was an exception. Recently released data on U.S. secondary

markets for patents indicate that a large fraction of patents are sold by �rms who developed

the idea to other �rms. Speci�cally, among all the patents registered in the USPTO, 16%

are traded and this number goes up to 20% among domestic patents; see the right panel of

Figure 2. For economic progress, not only the possibility of exchange, but also the speed of

that process is important. USPTO data shows that patents are sold among �rms on average

within 5:34 years (with a standard deviation of 4:38 years); the left panel of Figure 2 shows

the frequency distribution over the duration for a sale. So, it takes time to sell a patent.

Firms often develop patents that are not close to their primary business activity. Think

about a patent as lying within some technological class. Call this technology class j. Empir-

ically this can be represented by the �rst two digits of its IPC code. Now, one can measure
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Figure 1: Patent US6281. The drawings for the safety pin in Walter Hunt�s patent applica-

tion.

how close two patents classes, j and k, are to each other. To do this, let #(X \ Y ) denote

the number of all patents that cite patents from technology classes X and Y simultaneously.

Let #(X [ Y ) denote the number of all patents which cite either technology class X or Y

or both. Then the following symmetric distance metric can be constructed:

d(X;Y ) � 1� #(X \ Y )
#(X [ Y ) ; with 0 � d(X; Y ) � 1:

This distance metric is intuitive. If each patent that cites X also cites Y , this metric delivers

a distance of d (X; Y ) = 0. If there is no patent that cites both classes, then the distance

becomes d (X; Y ) = 1. The distance between two technology classes increases, as the fraction

of patents that cite both decreases. Given this metric between technology classes, a distance

measure between a patent and a �rm can now be constructed.

In order to measure how close a patent is to a �rm in the technology spectrum, a metric

needs to be devised. For this purpose, a �rm�s past patent portfolio is used to identify the

�rm�s existing location in the technology space. In particular, the distance of a particular

patent p to a �rm f is computed by calculating the average distance of p to each patent in
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Figure 2: Duration and Sales.

�rm f�s patent portfolio as follows:

d� (p; f) � [
1

kPfk
X
p02Pf

d (Xp; Yp0)
�]1=�; with 0 < � � 1; and where 0 � d�(p; f) � 1: (1)

In this expression, Pf denotes the set existing patents of �rm f prior to patent p, kPfk stands

for its cardinality, and d (Xp; Yp0) measures the distance between the technology classes of

patents p and p0. Note that d (Xp; Yp0) = 0 when the �rm has other patents in the same class

as p. Therefore, this metric is de�ned only for � > 0. Finally, when � = 1 the above metric

returns the average distance of p to each patent in �rm f�s patent portfolio:

d1 (p; f) �
1

kPfk
X
p02Pf

d (Xp; Yp0) ; with 0 � d1(p; f) � 1:

The empirical distribution for this notion of distance is displayed in Figure 3, for three

values of �. As can be seen, patents have heterogeneous technological distances to the invent-

ing �rms. An analysis of the patent data in Section 3 uncovers some additional important

facts about the nature of these exchanges. In particular:

1. A patent contributes more to a �rm�s sales and stock market values if it is closer to

the �rm in terms of technological distance.
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Figure 3: Empirical distance distributions. The �gure plots empirical density functions for

the distance, d�(p; f), between a patent, p, and a �rm�s patent portfolio, f , for three values

of �:

2. A patent is more likely to be sold the more distant it is to the inventing �rm.

3. A patent is technologically closer to the buying �rm than to the selling �rm.

These listed facts, in conjunction with those displayed in Figures 2 and 3, raise important

questions that have been left unanswered by the existing literature: How sizeable is the

misallocation of ideas? How does the secondary market for ideas a¤ect economic growth?

Do frictions in the secondary market lead to more in-house R&D or do they discourage

innovations overall? This paper is an attempt to answer these questions.

1.2 The Analysis

To do this, a search-theoretic model of the market for patents is built here. Each period

�rms invest in research and development. Sometimes this process generates an idea, other

times it doesn�t. Each �rm operates within a particular technology class. An idea increases

a �rm�s productivity. The extent to which it does depends on the proximity of the idea to
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the �rm�s technology class. A �rm may wish to sell an idea that isn�t close to its own class.

It can do so using a patent agent. Analogously, the �rm might want to purchase an idea

through a patent agent if it fails to innovate. Due to search frictions it may take time for a

patent agent to �nd a buyer for a patent. Also, a patent may not be the perfect match for

a buyer. Due to R&D by �rms there is growth in the model. A balanced growth path for

the model is explicitly characterized. A unique invariant �rm-size distribution exists despite

the fact that the distribution for productivity across �rms is continually fanning out.

The model is calibrated so that it matches certain features of the U.S. economy, such as

the average rate of growth, the share of R&D in GDP, the share of patents that are sold, the

average duration of a sale, the spread in sale time, etc. Clearly, a market for patents a¤ects

the incentive to do R&D. On the one hand, the fact that an idea, which is not so useful for

the innovator�s own production, can be sold raises the return from engaging in R&D. On

the other hand, the fact that a �rm can buy an idea reduces the reward from doing R&D.

A goal of the analysis is to examine how a patent market a¤ects R&D and, hence, growth.

To gauge the importance of the patent resale market for economic growth and welfare,

a sequence of structured thought experiments is undertaken. In this sequence of thought

experiments the e¢ ciency of the patent market is successively increased. First, it is shown

that a faster rate of contact between buyers and sellers leads to a welfare gain of 11%

(measured in terms of consumption). Next, if a seller�s patent could be perfectly matched

with a buyer�s ideal idea then a further welfare of 36% materializes. Last, if the ideas that

�rms produce are perfectly suited for their own production process (this corresponds to a

situation where there is no mismatch between a �rm and the idea that it generates) then

welfare would be 50% higher than in the baseline model. So, it seems that e¢ ciency in the

resale market for patents does matter.

The market for patents is often thought of as being ine¢ cient and illiquid. Buying and

selling intellectual property is a di¢ cult activity. Each patent is unique. It may not be readily

apparent who the potential buyers and competing sellers even are, especially in situations

where enterprises desire to keep their business strategies secret. Buyers and sellers may
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have very di¤erent valuations about the worth of a patent. Patents are often sold through

intermediaries. This motivates the search-theoretic framework presented here.

Historically patent agents were often lawyers. Dealing with patent buyers and sellers

they understood both sides of the market. Inventors used them to �le patent applications.

So, the lawyers became acquainted with the new technologies that were around. Buyers used

them to vet the merits of new technologies. Hence, the lawyers were familiar with the types

of patents that were likely to be marketable. This lead naturally to the lawyers acting as

intermediaries in patent sales. Edward Van Winkle typi�es the business. He was a patent

agent at the beginning of the 20th century. Van Winkle was a mechanical engineer who

acquired a law degree by correspondence course. He was well suited to provide advice on

the legal and technical merits of inventions for his clients on both sides of the market. Van

Winkle cultivated a network of businessmen, inventors, and other lawyers. Lamoreaux and

Sokolo¤ (2003) detail how he brokered various types of deals with the buyers and sellers of

patents. They also document for the period 1870 to 1910 an increased tendency for inventors

(especially the more productive ones) to use specialized registered patent agents to handle

transactions associated with their patents.

Even today the market for patents is thin, according to Gans and Stern (2010) and Hagiu

and Yo¢ e (2011). The patent market is highly specialized. Gans and Stern (2010) and Hagiu

and Yo¢ e (2011) discuss the failure of online intellectual property platforms to arbitrage the

market. According to them, the sensitivity of intellectual property makes potential buyers

and sellers reluctant to reveal information online; they prefer face-to-face dealings with the

other party. Also, some buyers may perceive a lemon�s problem: if the patents were truly

valuable then the seller should be able to pro�t by developing the idea themselves or by

selling it directly to interested parties.1

1 The current analysis ignores the rise of non-practicing entities and defensive aggregators. The former
buy patents and then seek licensing fees from �rms under threat of litigation. The latter try to reduce
litigation for �rms by buying �toxic patents� and providing licences. There also �rms that are hybrids
between these two forms of entities. See Hagiu and Yo¢ e (2011) for a discussion.

6



1.3 Relationship to the Literature

The paper contributes to a few strands in the literature. The research builds and extends

models of endogenous growth with quality improvements. [See Aghion, Akcigit and Howitt

(2013), and the references therein, for a recent survey of Schumpeterian growth models].

Recently attention has been directed to how new ideas spread in an economy. Some work

stresses technology di¤usion via innovation and imitation [e.g., Acemoglu, Aghion and Zili-

botti (2006), Jovanovic and MacDonald (1994), and Konig, Lorenz and Zilibotti (2012)].

Other work emphasizes matching and other frictions in the transfer of ideas. [See for in-

stance, Benhabib, Perla, and Tonetti (2012), Chatterjee and Rossi-Hansberg (2012), Chiu,

Meh and Wright (2011), and Lucas and Moll (2011)].

The work here emphasizes matching frictions. It di¤ers from the above papers in a

number of signi�cant ways: First, the focus is on an economy where growth is driven by

heterogenous ideas that are invented by �rms. A �rm may not be able to make the best use

of the idea discovers. Second, �rms can trade their ideas in a secondary market subject to

the matching frictions. Third, while the literature has mainly been theoretical, the current

research uses micro data on patent reassignments to motivate and discipline the analysis.

Last, on the empirical side, the paper is related to interesting empirical work by Serrano

(2010, 2011). It contributes to this empirical line of work by introducing some new facts on

the transfer of ideas. It also illustrates how patent data can be used in conjunction with

an endogenous growth model to gauge the extent of mismatch in ideas that may arise in an

economy.

The focus on mismatch in ideas connects with recent work on misallocation [see for

instance, Acemoglu, Akcigit, Bloom, and Kerr (2013), Guner, Ventura, and Xu (2008),

Hsieh and Klenow (2009), and Restuccia and Rogerson (2008)]. Ideas are not necessarily

born to their best users. The existence of a secondary market for ideas and its e¢ ciency

can have a major impact on mitigating any initial misallocation. Thus, the presence of

a secondary market may contribute signi�cantly to productivity growth. Addressing this

question is the focus of the current paper.
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2 Model

2.1 Environment

Consider an economy, where time �ows discretely, with a continuum of �rms of unit measure.

The �rms produce a homogeneous �nal good using capital and labor. Each �rm belongs

to some technology class j that resides on a circle with radius 1=�. At each point on

the technology circle there are �rms of mass 1=2. A �rm enters the period with a level

of productivity z. At the beginning of a period each �rm develops an innovation with

probability i. The innovation will be patented and belongs to some technology class k on

the circle. The distance between the �rm�s own technology class, j, and the innovation, k, is

given by d(j; k). This represents the length of the shortest arc between j and k. Transform

this distance measure into a measure of technological proximity, x = 1 � d(j; k), de�ned

on [0; 1]. A high value for x indicates that the innovation is close to the �rm�s technology

class. The value of x is drawn from the distribution function X(x). The technology circle

is illustrated in the left panel of Figure 4. The analysis will focus on symmetric equilibrium

around this circle.

Firms produce output, o, at the end of a period according to the production process

o = (z0)�k�l�; with � + �+ � = 1; (2)

where k and l are the amounts of capital and labor used in production and z0 is its end-of-

period productivity. Labor is hired at the wage rate w. There is one unit of labor available

in the economy. Capital is hired at the rental rate er.
Now, at the beginning of a period �rms pick the probability of a successful innovation,

i. They do this according to the convex cost function

C(i; s) = �z�=(�+�)i1+�=(1 + �): (3)

where z is the mean of the productivity distribution in the economy at the beginning of

the period. Cost rises in lock-step fashion with average productivity, z, in the economy,

which will be proportional to wages. (It will be established later that wages will grow at the
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same rate as z�=(�+�).) Aggregate productivity will be a function of the aggregate state of

the world represented by s. A precise de�nition for the aggregate state of the world will be

provided later. A �rm that successfully innovates can either keep or sell its idea to a patent

agent. A �rm that does not innovate can try to buy a patent from an agent. A patent on

the market survives over time with probability �. After it expires it cannot be used, an

assumption made for technical convenience.

Incorporating a patent of closeness x increases a �rm�s end-of-period productivity, z0,

according to the law of motion

z0 = L(z; x; s) = z + 
xz; (4)

where z is the initial productivity level and x is the technological proximity of the patent

to the �rm. Two things to note about this law of motion. First, the closer is an innovation

to a �rm�s own technology class, as represented by x, the bigger will be the increase in

productivity, z0 � z. Second, the higher is the economy-wide baseline level of productivity,

z, the more valuable a patent will be for increasing productivity. In equilibrium, z will be a

function of the aggregate state of the world as denoted by s.

A �rm that fails to innovate can try to buy a patent from a patent agent. Likewise,

a �rm that draws an innovation may sell the associated patent to a patent agent at the

�xed price q. This price is determined on a competitive market. Once a patent is sold

to an agent the seller cannot use it in the future. A patent agent can only handle one

patent at a time. The introduction of patent agents simpli�es the analysis. Without this

construct the analysis would have to keep track of the portfolio of patents that each �rm

has for sale. This technical construct is imposed without apology, as in the real world many

patents are sold through agents, as was discussed. Additionally, buying or sell a patent can

be thought of being equivalent to buying or selling an exclusive licensing arrangement for

the idea. Licensing arrangements are inferior to patents in some respects. The purchaser of

the licensing arrangement cannot sue parties that infringe on the underlying patent because

the former does not own the patent. A non-exclusive licensing arrangement may leave the

purchaser facing competition from other license holders. This may be an important limitation
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for �rms selling products in national or international markets, where they may certainly be

competitors.

Let na and nb represent the numbers of agents and buyers in a market. The total number

of matches in the market is given by the matching function

M(na; nb) = �(na)
�(nb)

1��:

The matches are completely random. Thus, the odds that an agent will �nd a buyer are

given by

ma(
na
nb
) =

M(na; nb)

na
= �(

nb
na
)1��;

and similarly that a buyer will �nd an agent by

mb(
na
nb
) =

M(na; nb)

nb
= �(

na
nb
)�:

Since agents and buyers are matched randomly, the proximity between the buyer�s technology

class and the class of the patent being sold is a random variable. A buyer will incorporate

a patent that he purchases into his production process in accordance with the above law of

motion for z. The price of the patent is determined by Nash bargaining between the agent

and buyer.2 Represent this price by p = P (z; x; s). The negotiated price will depend on

the proximity of the patent, x, and the state of the buyer�s technology, z. The bargaining

power of the agent is given by !. In contrast, the price at which a �rm sells its patent to

an agent is �xed at q, because the agent doesn�t know who he will sell the patent to in the

future. The timing of events is portrayed in the right panel of Figure 4.

2.2 The Representative Consumer/Worker

In the background of analysis is a representative consumer/worker. This individual supplies

one unit of labor inelastically. The person owns all of the �rms in the economy. He also rents

2 In the current analysis, buyers know the quality of the match of the patent that they are purchasing.
Chatterjee and Rossi-Hansberg (2012) examine the situation where the quality of an idea is private infor-
mation. In such a setting there is a lemons problem in the market for ideas. It may pay for developers to
start up new companies to implement good ideas because they cannot be sold at a favorable price. Such
considerations are absent here.
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Figure 4: Technology circle (left panel) and the timing of events (right panel).

out the capital used by �rms. Thus, he will earn income from wages, pro�ts and rentals.

Capital depreciates at the rate � . The real return earned by renting capital is 1=r. ( I.e.,

r is the reciprocal of the gross interest rate. It will play the role of the discount factor in

the Bellman equations formulated below.) The individual is assumed to have a momentary

utility function of the form U(c) = c1�"=(1 � "), where c is his consumption in the current

period and " is the coe¢ cient of relative risk aversion. He discounts the future at rate �.

Last, the representative consumer/worker�s goal in life is to maximize his discounted lifetime

utility. Since this problem is entirely standard it is not presented.

2.3 Firms

A producer hires labor, l, at the wage rate w, and capital, k, at the rental rate, er =
1=r � (1� �), to maximize pro�ts. Thus, its decision problem is

�(z0; s) = max
k;l
[(z0)�k�l� � erk � wl];
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where �(z0; s) is the pro�t function associated with the maximization problem. The �rst-

order conditions to this maximization problem imply that

k = �
oer ; (5)

and

l = �
o

w
: (6)

Using (2), (5) and (6), it follows that pro�ts are given by

�(z0; s) = (1� �� �)o = z0(1� �� �)[(�er )�( �w )�]1=� : (7)

Again, in equilibrium the rental and wage rates will be functions of the aggregate state of

the world.

Let V (z; s) represent the expected present-value of a �rm that has a technology level of

z and is about to learn whether or not it has successfully innovated. Due to the focus on

symmetric equilibrium there is no need ever record the �rm�s location on the technology

circle. Now, suppose that the �rm does not innovate. Then, it will try to buy a patent.

With probability mb(x) it will meet an agent selling a patent in technology class x. The

patent sells at the price p = P (z; x; s), which is a function of the buyer�s type, z, as well

proximity of the patent to the �rm�s technology class, x. The �rm will only buy the patent

if it yields a higher payo¤ than what it will obtain if it doesn�t buy it. The determination of

the patent price is discussed below. Denote the distribution, over proximity, for the patent

agents by D(x). The expected discounted present value of the buyer, B(z; s), is

B(z; s) = mb(
na
nb
)

Z
fIa(z; x; s)[�(L(z; x; s); s)� P (z; x; s) + rV (L(z; x; s); s0)]

+[1� Ia(z; x; s)][�(z; s) + rV (z; s0)]gdD(x)

+[1�mb(
na
nb
)][�(z; s) + rV (z; s0)]; (8)

where

Ia(z; x; s) =

8<: 1; if the buyer purchases a patent;

0; otherwise:
(9)

12



The indicator function Ia(z; x; s) is de�ned below. In the model developed here, there is no

uncertainty at the aggregate level. Thus, next-period�s aggregate state of the world, s0, is

just some determinisitic function of this period�s aggregate state of the world, s. The law

of motion governing this dependence is omitted for convenience.

Turn now to the situation where the �rm successfully innovates. If it decides to keep the

patent, then the �rm will have value K(L(z; x; s); s), as given by

K(L(z; x; s); s) = �(L(z; x; s); s) + rV (L(z; x; s); s0): (10)

Alternatively, it can sell the patent to an agent. The value of a seller, S(z; s), is

S(z; s) = �(z; s) + q + rV (z; s0): (11)

Once the seller puts a patent up for sale at the beginning of the period it may expire with

probability 1 � �. A �rm that innovates will either keep or sell its patent depending on

which option yields the highest value. Given this, it is easy to see that

Ik(z; x; s) =

8<: 1; if K(L(z; x; s); s) > S(z; s);

0; otherwise:
(12)

2.3.1 The Decision to Innovate

The �rm�s decision to innovate is now cast. With probability i the �rm innovates and with

probability 1 � i it doesn�t. The �rm chooses the probability of innovation subject to the

convex cost function C(i; s). Hence, write the innovation decision as

V (z; s) = max
i
f(1� i)B(z; s) + i

Z
fIk(z; x; s)K(L(z; x; s); s) + [1� Ik(z; x; s)]S(z; s)gdX(x)

�C(i; s)g: (13)

The �rst-order condition associated with this problem isZ
fIk(z; x; s)K(L(z; x; s); s) + [1� Ik(z; x; s)]S(z; s)gdX(x)�B(z; s)

= C1(i; s);
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so that

i = R(z; s) = C�11

�Z
fIk(z; x; s)K(L(z; x; s); s) + [1� Ik(z; x; s)]S(z; s)gdX(x)�B(z; s); s

�
:

(14)

2.4 Patent Agents

Turn now to the problem of a patent agent. It buys a patent at the competitively determined

price q. With probability ma(na=nb) it will meet a potential buyer on the market and with

probability 1 �ma(na=nb) it won�t. Denote the distribution of buyers by G(z). The value

for an agent, A, with a patent is thus given by

A(s) = ma(
na
nb
)

Z Z
Ia(z; x; s)P (z; x; s)dG(z)dD(x) (15)

+ma(
na
nb
)r�A(s0)

Z Z
[1� Ia(z; x; s)]dG(z)dD(x)

+[1�ma(
na
nb
)]r�A(s0);

where Ia(z; x; s) is speci�ed by (9) and is de�ned formally shortly below. The price of a

patent is determined via Nash bargaining. Speci�cally, p is determined in accordance with

max
p
f[�(L(z; x; s); s)� p+ rV (L(z; x; s); s0)� �(z; s)� rV (z; s0)]1�! � [p� r�A(s0)]!g:

The �rst term in brackets gives the buyer�s surplus. This gives di¤erence between the value

of the �rm when it secures a patent and the value when it does not. The second term details

the seller�s surplus. In standard fashion,

p = P (z; x; s) = ![�(L(z; x; s); s) + rV (L(z; x; s); s0)

��(z; s)� rV (z; s0)] + (1� !)r�A(s0); (16)

whenever both the buyer�s and seller�s surpluses are positive. The price lies between r�A(s0)

and �(L(z; x; s); s) + rV (L(z; x; s); s0)��(z; s)� rV (z; s0); if the former is above the latter

then no solution exists.
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Now, de�ne Ia(z; x; s) in the following manner:

Ia(z; x; s) =

8<: 1; r�A(s0) � p � �(L(z; x; s); s) + rV (L(z; x; s); s0)� �(z; s)� rV (z; s0)

0; otherwise:
(17)

2.5 Symmetric Equilibrium Along a Balanced Growth Path

The focus of the analysis is solely on symmetric equilibrium along a balanced growth path.

In equilibrium the demand for labor must equal the supply of labor. Recall that there is one

unit of labor in the economy. Let Z 0(z0) represent the end-of-period distribution of z0 across

�rms. Now, using (2), (5) and (6) it is easy to deduce that

l = (
�er )�=�( �w )(�+�)=�z0: (18)

Equilibrium in the labor market then implies thatZ
(
�er )�=�( �w )(�+�)=�z0dZ 0(z0) = 1;

so that the aggregate wage rate, w, is given by

w = �(
�er )�=(�+�)[

Z
z0dZ 0(z0)]�=(�+�): (19)

The wage rate, w, depends on the mean of the end-of-period productivity distribution across

�rms,
R
z0dZ 0(z0).

Next, suppose that there is free entry by agents into the market to buy patents from

�rms. This dictates that the price q will be determined by

q = A(s): (20)

To complete the description of an equilibrium, the evolution of the distributions for D;G

and Z must be described. First, the distribution for D must be uniform in a symmetric

equilibrium. Recall that a �rm�s location in the technology space is represented by a point

on the circle. Think of a buyer located at the top of the circle. Suppose that a set of �rms on
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some tiny arc jk to the left of top are selling patents of mass � that are of distance between

0 and " away from the top. Now take any other arc lm of equal length even further to the

left of top. In a symmetric equilibrium there will be, for all practical purposes, an identical

set of �rms selling patents of mass � that are of distance between d(j; l) and d(j; l)+ " away

from the top.

Second, the distribution function Z evolves over time (from Z to Z 0) according to

Z 0 = TZZ; (21)

where the transition operator TZ is speci�ed later. Third, the distribution for patent buyers

is described simply by

G(z) =

R z
[1�R(y; s)]dZ(y)R1
[1�R(y; s)]dZ(y)

: (22)

Any �rm that fails to innovate will enter the market for patents.

Last, it is obvious that the aggregate level of productivity, z, its gross rate of growth, g,

and the aggregate level of innovation, i, are given by

z =

Z
zdZ(z), g =

R
z0dZ 0(z0)R
zdZ(z)

, and i =
Z
R(z; s)dZ(z). (23)

By now it should be clear, that the aggregate state of the economy is speci�ed by s = Z.

From this it is easy to calculate wages, w, using (19) and (21).

To summarize:

De�nition 1 An equilibrium is described by a set of allocation rules, Ik(z; x; s) and Ia(z; x; s),
value functions for �rms, B(z; s), K(L(z; x; s); s), S(z; s), and V (z; s), a rate of innovation
for �rms, R(z; s), a value function for the patent agent, A(s), a set of selling and buying
prices, q and P (z; x; s), and distribution functions for sellers, D(x), buyers, G(z), and �rm
productivities, Z(z), such that:

1. The indicator function Ik(z; x; s) speci�es, in line with (12), whether or not an inno-
vator will keep his patent, given the value functions K(L(z; x; s); s) and S(z; s).

2. The indicator function Ia(z; x; s) describes, as determined by (17), whether a sale be-
tween a buyer and a patent agent will occur, given the value functions V (z; s) and
A(s).
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3. The value functions for �rms, B(z; s), K(L(z; x; s); s), S(z; s), and V (z; s), are given
by (8), (10), (11) and (13), given prices, q and P (z; x; s), and the distribution functions
for sellers, D(x), and �rm productivities, Z(z).

4. The rate of innovation for a �rm, i = R(z; s), is speci�ed by (14), given the distribution
functions for sellers, D(x), the value functions B(z; s), K(L(z; x; s); s) and S(z; s), and
the decision rule for selling Ik(z; x; s).

5. The value function for patent agents, A(s), is given by (15), (10), (11) and (13), given
the selling price for a patent, P (z; x; s), and the distribution of buyers, G(z).

6. The prices for selling and buying patents, q and P (z; x; s), are determined in line with
(20) and (16), given the value functions V (z; s) and A(s).

7. The distribution function Z(z) evolves over time according to (21), given the functions
Ik(z; x; s) and Ia(z; x; s). The mean level, z, and growth, g, of �rm productivity and
the aggregate rate of innovation, i, are speci�ed by (23). The distribution function for
buyers, G(z), is given by equation (22), given i and Z(z). The distribution function,
D(x), for patent agents is uniform.

The analysis is restricted to studying balanced growth paths. The solution to the above

economy along a balanced growth path will now be characterized. Suppose that mean level

of productivity for �rms, z, grows at the constant rate g. Specify the variables z and z in

transformed form so that ez = z�=(�+�) and ez = z=z�=(�+�). Thus, ez grows at rate g�=(�+�)
and, on average, so will ez. It turns out that ez (or equivalently z) is su¢ cient to characterize
the aggregate state of the economy along a balanced growth path.

Proposition 2 (Balanced Growth) There exists a symmetric balanced growth path of the
following form:

1. The interest factor and rental rate on capital are given by

r = �=g"�=(�+�); (24)

and er = g"�=(�+�)=� � 1 + �: (25)

Here g�=(�+�) is the common rate of growth in consumption, capital, output and wages.

2. The value functions for buying, keeping and selling �rms have linear forms in the state
variables ez and ez. Speci�cally, B(z; s) = b1ez+b2ez, K(L(z; x; s); s) = k1ez+ k2(x)ez, and
S(z; s) = s1ez + s2ez.
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3. The indicator function for an innovator speci�es a threshold rule such that Ik(z; x; s) =
1,whenever x > xk, and is zero otherwise.

4. The indicator function for a sale between a buyer and seller speci�es a threshold rule
such that Ia(z; x; s) = 1, whenever x > xa, and is zero otherwise.

5. The value function for a patent agent has the linear form A(z) = aez.
6. The beginning-of-period value function for a �rm has the linear form V (z; s) = v1ez +
v2ez. The constant rate of innovation for a �rm is

i = i = f 1
�
[X(xk)s2 +

Z
xk

k2(x)dX(x)� b2]g1=�: (26)

7. The constant rate of growth for aggregate productivity is implicitly given by

g � 1 = 
[i
Z
xk

xdX(x) + (1� i)mb(
na
nb
)

Z
xa

xdx]: (27)

8. The prices for selling and buying patents are

q = aez;
and

P (z; x; s) =
�
(1� !)�rg�=(�+�)a+ (!� + rv1=g�=(�+�))
x

�ez;
where � is a constant.

9. The matching probabilities for sellers and buyers of patents are constant and implicitly
de�ned by

ma(
na
nb
) = �f

f1� �[1�ma(
na
nb
)(1� xa)]g(1� i)

�iX(xk)
g1��; (28)

and

mb(
na
nb
) = �f �iX(xk)

f1� �[1�ma(
na
nb
)(1� xa)]g(1� i)

g�: (29)

10. The constants a, b1, b2, k1, k2, �,s1, s2, v1, v2, xa and xb are determined by a nonlinear
equation system, in conjunction with equations (24), (26), (27), (28) and (29) that
determine the variables g; i;r;ma(na=nb); and mb(na=nb), that does not involve eitherez or ez.

Proof. See Appendix 8.1.
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2.5.1 Discussion

Along a balanced growth path, wages grow at the constant gross rate g�=(�+�), a fact evident

from equation (19). So will aggregate output and pro�ts, as can be seen from (7). The gross

interest rate, 1=r, will remain constant along balanced growth. Point (2) implies that on

average the values of the �rm at the buying, selling, and keeping stages also grow at the rate

of growth of output. So, the relative values of a �rm at these stages remain constant along a

balanced growth path. Thus, it is not surprising then that the decisions to buy, sell or keep

patents in terms of proximity, x, do not change over time. Hence, the function Ik(z; x; s)

does not depend on z. It may seem surprising that the decision doesn�t depend on z, either.

This transpires because a �rm�s pro�ts are linear in z, as (7) shows. It turns out that

k1 = s1, which implies that only x is relevant (when comparing k1ez + k2(x)ez with s1ez + s2ez).
Likewise, the value of a patent agent also increases at rate g�=(�+�)�point 3. Hence, equation

(20) dictates that the price, q, at which a �rm can sell a patent must also grow at this rate.

Additionally, it is easy to see from (16) that the price at which the agent sells a patent to

�rms, p, will appreciate at this rate too. Note that this price does not depend on z, because

given the linear form of the value function, V , only x will be relevant (when comparing v1z0

with v1z). It�s easy to deduce from equation (14) that the rate of innovation, i, will be

constant over time if B, K, and S grow at the same rate as aggregate productivity. Since

the decisions to buy and sell patents only depend on x, it is not surprising that the number

of buyers and sellers on the patent market are �xed along a balanced growth path. Last, the

evolution of shape of the distribution function Z over time does not matter for the analysis.

Its mean grows at rate g, independently of any transformation in shape.

2.5.2 Stationary Firm-Size Distribution

The model will display a stationary �rm-size distribution along a balanced growth, despite

the fact the distribution for Z is shifting over time and may be changing shape. To see this,

substitute (19) into (18), while making use of the de�nition in (23), to get

l =
z

z
:
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Thus, the amount of labor that a �rm hires is proportional to its own productivity, z, relative

to the mean level of productivity in the economy, z. So, specifying the �rm-size distribution

amounts to characterizing the distribution for z=z.

To do this, focus on a �rm�s draw for x. This is an independently and identically distrib-

uted random variable. To see this, note that in the current setting a �rm will innovate with

probability i. If it innovates then it will draw x from the distribution X[0; 1]. Conditional

on innovating, it will sell the technology with probability xk and will keep it with probability

1 � xk. If it fails to innovate then it will go onto the market for patents. Conditional on

failing to innovate, it �nds a buyer with probability mb. When it �nds a buyer then it will

draw from U [0; 1]. A purchase then occurs with probability 1� xa. Hence,

x is

8>>><>>>:
= 0; with Prf(1� i)[(1�mb) +mbxa] + ixkg;

� X[xk; 1]; with Pr[i(1� xk)];

� U [xa; 1]; with Pr[(1� i)mb(1� xa)]:

(30)

Note that 0 < E[x] < 1.

Turn to the �rm�s law of motion for z or (4). Divide z through by z to get

z0

z0
=
z

z0
z

z
+ 


z

z0
x;

or bz0 = 1

g|{z}
<1

bz + 
 1
g
x; (31)

where bz � z=z. This is a stationary autoregressive process with a non-Gaussian error term.
Here, treat g as a constant, The gross growth rate, g, can be taken as a constant because

it can be solved for independently of the form for the stationary distribution. Proposition 2

establishes this. In a similar vein, mb, xa, and xk are known constants that are independent

of the form of the stationary distribution; again, this is a consequence of Proposition 2. Note

that the process for bz0 will be trapped within the compact set [0; z], where z � 
=[(g � 1)],
provided that it starts o¤ within this interval.

Proposition 3 (Existence of a Unique Stationary Firm-Size Distribution). The stochastic
process (31) converges weakly to a unique invariant distribution.
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Proof. See Appendix 8.2.

Denote the stationary distribution for bz0 by bZ. Why does the stationary �rm-size distrib-
ution have a �nite upper bound, z? The answer is that it is di¢ cult for a �rm�s productivity,

z, to grow faster than aggregate productivity, z. Growth in aggregate productivity pulls all

�rms along as is evident in (4). When a �rm�s growth in productivity pulls ahead of aggre-

gate growth it loses this slipstream e¤ect, so to speak. Since z0 increases in an arithmetic

fashion with x growth must decay when z is held �xed. The distribution for productivity

across �rms, or Z, is not stationary. Consider a point along a balanced growth path where

z = 1. The z�s will be distributed on [0; z] according to bZ, where z = 
=[(g � 1)]. Next

period z will have grown to z0 = gz. Now, z will be distributed on the [0;gz] according

to Z 0 = bZ(z=g). Note the distribution for the z�s is getting stretched rightward over time;
i.e., the cumulative distribution function is being de�ned over an ever increasing domain. In

general, if in the current period Z : [0; z] ! [0; 1] then for next period Z 0 : [0;gz] ! [0; 1],

where Z 0(z) = Z(z=g). This implicitly de�nes the transition operator TZ in (21).

3 Empirical Analysis

The empirical analysis is undertaken here. The next section provides some details on data

sources and variable constructions. For further details, please see Section 9.

3.1 Data Sources

NBER-USPTO Utility Patents Grant Data (PDP). The core of the empirical analysis draws

from the NBER-USPTO Patent Grant Database (PDP). Patents are exclusionary rights,

granted by national patent o¢ ces, to protect a patent holder for a certain amount of time,

conditional on sharing the details of the invention. PDP data contains detailed information

on 3,210,361 utility patents granted by the US Patent and Trademark O¢ ce between the

years 1976 and 2006. A patent has to cite another patent when the former has a content

related to the latter. When patent A cites patent B, this particular citation becomes both a

backward citation made by A to B and a forward citation received by B from A: Moreover,
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the PDP contains an International Patent Classi�cation (IPC) code for each patent that

helps identify their relevant technologies.3 Extensive use of the forward and backward

citations are made, as well as the IPC codes assigned to each patent to determine their

location in technology space, the distances between technology classes and also to proxy

for patent qualities. The exact methodology followed to construct these measures will be

detailed below.

Patent Reassignment Data (PRD). The second source of data comes from the recently-

released USPTO patent assignment �les retrieved from Google Patents Beta. This dataset

provides detailed information on the changes of ownership of the patents for the years 1980 to

2011. The records include 966,427 patent reassignments not only due to sales, but also due

to mergers, license grants, splits, mortgages, collaterals, conversions, internal transfers, etc.

Reassignment records are classi�ed according to a search algorithm that looks for keywords,

such as �assignment�, �purchase�, �sale�, and �merger�, and assigns them to their respective

categories. Through this process, 99% of the transaction records are classi�ed into their

respective groups.

Compustat North American Fundamentals (Annual). In order to assess the impact of

patents and their technological distance on �rm moments such as sales growth and stock

market valuations, the PDP patent data is linked to Compustat �rms. The focus is on the

balance sheets of Compustat �rms between the years 1974-2006, retrieved fromWharton Re-

search Data Services. The Compustat database and the NBER PDP database are connected

using the matching procedure provided in the PDP data.

The empirical analysis requires the construction of a notion of distance in the technology

space. For that purpose, the citation patterns across IPC technology �elds are utilized. PDP

contains the full list of citations with the identity of citing and cited patents. Since the data

also contains the IPC code of each patent, the percentage of outgoing citations from one

3 USPTO originally assigns each patent to a particular US Patent Classi�cation (USPC) which is a system
used by the USPTO to organize all patents according to their common technological relevances. The PDP
also assigns an IPC code to each patent using the original USPC and a USPC-IPC concordance based on
the International Patent Classi�cation Eighth Edition.
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technology class to another are observable. Using the information, the metric (1) is employed

to gauge the distance between a new patent and a �rm�s location in the technology spectrum.

3.2 Stylized Facts

Next, the empirical �ndings highlighted in the introduction of the paper are presented.

3.2.1 Firm Moments and Patent-Firm Distance

Are patent-�rm distances important when it comes to the relationship between a �rm�s

patent portfolio and its moments, such as sales and assets? In order to answer this question,

the following table regresses �log real sales� and �log market value� in year t on a �rm�s

patent portfolio, its distance-adjusted patent portfolio, and the �rm�s size in the same year.

To convert nominal variables into their real counterparts, sector-speci�c NBER CES MID

shipment de�ators are used. The regressions also include year and �rm �xed e¤ects to rule

out �rm-speci�c properties and time trends.

Table 1: Firm Moment Regressions
Variable log real sales log market value
log patent stock 0:195��� 0:039���

(0:008) (0:008)
log dist-adj pat stock �0:009��� �0:020���

(0:003) (0:003)
log employment 0:936��� 0:728���

(0:008) (0:008)
intercept yes yes
year yes yes
�rm �xed e¤ect yes yes
Obs. 23,028 36,094
R2 0.96 0.92
Standard errors are reported in parentheses.

*10%, **5%, ***1% signi�cance.

As expected, the patent portfolio of a �rm is positively related to its sales and stock

market valuation. More interestingly, a �rm�s patent portfolio is negatively related to �rm

moments, once it is adjusted by patent distances. The distance-adjusted patent stock is

constructed in a way such that each patent�s contribution to the portfolio is multiplied by
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its distance to the �rm prior to the aggregation. As a result, the coe¢ cient of the distance-

adjusted patent stock quanti�es the loss of correlation between the patent portfolio and the

�rm moments due to the technological mismatch between the �rm and its patents.

In order to interpret the results correctly, one should consider the ratio of the negative

coe¢ cient of the distance-adjusted patent stock to that of the unadjusted patent stock. This

ratio is statistically signi�cant, but not huge for real sales (4.62%), but quite high for market

value of equity (51.3%). These regressions suggest that a patent portfolio that is perfectly

mismatched (with all patents having distance = 1) contributes 50% less to the average �rm

value compared to a perfectly matched patent portfolio (with all patents having distance

= 0). Using the sample means for log patent stock and log distance adjusted patent stock,

the percentage loss generated by the observed misallocation turns out to be 2.75% for real

sales and 30.5% for market value on average.

3.2.2 Patent Sale Decision and Patent-Firm Distance

Does the technological distance of a patent to the �rm in�uence the decision to keep or sell

a patent? In order to conduct this analysis, the indicator variable of whether a patent is

sold or kept (=1 if a patent is sold, =0 if not) is regressed on a number of potentially related

regressors, including the patent�s distance to the initial owner. The following table reports

the OLS regression results:
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Table 2: Patent Resale Decision
Variable Indicator (=1 if sold)
distance 0:0212���

(0:001)
patent quality 0:0004���

(0:000)
log (size of patent portfolio) �0:0161���

(0:000)
intercept yes
year yes
�rm �xed e¤ect yes
Obs. 2,564,303
R2 0.4198
Standard errors are reported in parentheses.

*10%, **5%, ***1% signi�cance.

This regression indicates that a patent is more likely to be sold if it is more distant to

the �rm. The size of the patent portfolio of the �rm, and patent quality are also included

in the regression to avoid spurious relationships, or mechanical bias that may be caused by

the construction of the distance metric. Year and �rm �xed e¤ects are likewise included to

remove potential sources of bias. Despite the addition of these controls, the coe¢ cient on

the distance variable remains statistically signi�cant, and positive. Considering the average

number of patents sold (� 15%) in the time period, the coe¢ cient suggests that a perfectly

mismatched patent is 14.1% (� 0:0212=0:15) more likely to be sold to another �rm, rather

than being kept. Recall also that the de�nition of sale employed is quite conservative, in the

sense that patent transfers due to mergers and acquisitions are not considered sales, even

though the primary motive for these events might be the acquisition of patents. The results

are in line with the intuition that a �rm is more likely to sell patents that are not a good

�t, rather than keeping them, due to the potential gains from trading the patent to a �rm

that might be better suited to exploit the embedded ideas commercially.
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3.2.3 Patent-Firm Distance Reduction Conditional on a Patent Resale

The primary motivation behind considering patent distance as a likely determinant of patent

resale decisions is the potential gains from trade that arise if the patent can be sold to a

�rm that can use it better, which in expectation yields more pro�ts. If this intuition is

correct, the distance between the owner �rm and the patent is expected to decrease after a

patent is sold. In order to test this hypothesis, a distance di¤erence variable for each patent

transaction is constructed, for which the buyer and seller �rms can be identi�ed in the PDP

data. Here d (p; fb) denotes the distance of the patent to the buyer �rm, and d (p; fs) to

the seller �rm. Next, a regression is run on the control variables that consist of year and

seller �rm �xed e¤ects. The sign and signi�cance of the intercept term is used to test the

hypothesis.

Table 3: Distance Reduction on Resale
Variable Change in distance

d (p; fb)� d (p; fs)
intercept �0:182���

(0:061)
year �xed e¤ect yes
seller �xed e¤ect yes
Obs. 25,170
R2 0.3980
Standard errors are reported in parentheses.

*10%, **5%, ***1% signi�cance.

The results indicate that after controlling for year and �rm �xed e¤ects, conditional

on a patent resale, the distance between a patent and its owner is signi�cantly decreased.

In other words, the mismatch between the idea and the �rm owning it is reduced. This

e¤ect is economically big. Considering that the average measure for distance is 0.56, average

reduction in distance is approximately 37.8% (� 0:182=0:481) of the average distance.
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4 Calibration

In order to simulate the model values must be assigned to the various parameters. There

are twelve parameters to pick: �, "; �, �, �; �, 
, �, �, �, �, and !. A distribution

needs to be speci�ed for X(x) as well. In order to select values for the parameters a set

of data targets is speci�ed for the model to match. Computing the solution to the model

essentially involves solving a system of nonlinear equations, as Point (10) in Proposition

2 made clear. A few features of the model, such as the invariant �rm-size distribution

and the distribution governing the duration of patent sales, are uncovered by conducting

a Monte Carlo simulation. In particular, a panel of 100,000 �rms is simulated for 3,000

periods. While it is not necessarily the case that a particular parameter governs the ability

of model to mimic a certain data target, due to simultaneity in the system of equations that

characterizes the model, some intuition about where each parameter is likely to impinge is

provided. The data targets are as follows:

1. Long-run growth in output. In the U.S. output grew at about 2% over the postwar

period. Intuitively, the parameter 
, which enters the law of motion for productivity

growth (4), should play an important role in determining this.

2. Long-run interest rate. A reasonable value for the long-run interest rate in the U.S. is

4%. Pick � using the equation � = rg"�=(�+�)�see (24).

3. The ratio of R&D expenditure to GDP. The U.S. expenditure on research and devel-

opment was about 2.91% of GDP. The parameter � is key here because it governs the

cost of doing R&D, as can be seen from (3).

4. Capital�s and labor�s shares of income. In line with Corrado, Hulten and Sichel (2009),

capital�s (�) and labor�s (�) share of incomes are selected to 25 and 60%. Intangi-

ble capital (�) then accounts for the remaining 15%. In the current setting, this is

interpreted as the value of patents, or intellectual property, in production.
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5. Depreciation rate for capital. The depreciation rate of capital is chosen to be 6.9%.

This is consistent with the U.S. National Income and Product Accounts.

6. Survival rate for a patent. In the U.S. a patent lasts for 17 years. Hence, � = 1 �

1=(1 + 17).

7. Fraction of patents sold. About 16% of patents are sold in U.S. The parameters gov-

erning the matching function and the strength of the weight of the patent agent in

bargaining underpin this statistic for the model. The higher the weight of the patent

agent in the bargaining (!) the higher will be the price q. This will entice more �rms to

sell. Similarly, the easier it is to sell a patent, as determined by the matching function,

the higher will be the price q.

8. Duration until a sale. The empirical frequency distribution for the duration of a sale

is targeted. In particular, the calibration procedure tries to minimize the sum of the

squared di¤erences between the empirical distribution and the analogue for the model.

It takes about 5.34 years on average to sell a patent. The coe¢ cient of variation around

this mean is 0.82. So, there is considerable variation in sales duration. The parameters

governing the matching function are obviously central here.

9. The Empirical Distribution for the Proximity of Patent to a Firm�s Technology Class.

Empirical distance distributions for the U.S. displayed in Figure 3. For the baseline

calibration, take the distance distribution associated with � = 2=3. De�ne a measure

of closeness or proximity between a patent p and a �rm f by c�(p; f) � 1 � d� (p; f),

where d� (p; f) is given by (1).The density associated with c�(p; f) is used for X(x).

This amounts to just a simple change in units on the horizontal axis in Figure 3.

Assume that x is distributed uniformly within each of the ten bins of the histogram.

10. R&D Cost Elasticity. In order to estimate the elasticity of the R&D cost function,

the cost function in the model is inverted to obtain a production function. Then a
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regression is run using Compustat data to determine the parameter values, where the

output of the R&D production function is proxied for by citation-weighted patents.

11. CRRA parameter. This parameter is taken to be 2, the midpoint between varying

estimates reported in Kaplow (2005).

12. Bargaining power. The bargaining powers of buyers and sellers are chosen to be equal.

The upshot of the calibration procedure is displayed in Tables 4 and 5. The parameters

�, "; �, �, �; �, 
, �, and ! can be calculated directly from the data targets (2), (4), (5), (6),

(10), (11) and (12) without having to solve the model. The distribution X(x) comes from

(9). To obtain values for �, �, and � the solution for the model must be computed. The

values for these parameters are selected by minimizing the Euclidean distance between the

5 data targets outlined in (1), (3), (7) and (8) and the model�s predictions for these targets.

Table 4: Parameter Values
Parameter Value Description Identi�cation
� = 0:98 Discount factor Real interest rate
" = 2:00 CRRA parameter Kaplow (2005)
� = 0:25 Capital�s share Corrado, Hulten and Sichel (2006)
� = 0:60 Labor�s share "
� = 0:07 Depreciation rate NIPA
� = 0:94 Patent survival rate U.S. patent law

 = 0:38 Law of motion, productivity Growth rate in GDP
� = 2:49 Cost of R&D R&D expenditure to GDP
� = 3:00 R&D cost elasticity Regression using Compustat data
� = 0:52 Matching function Fraction of patents sold, duration
� = 0:15 " until sale, and c.v. over duration
! = 0:50 Bargaining power Imposed, equal for buyers and sellers
X(x) Proximity distribution Empirical distribution

Table 5: Calibration Targets
Target U.S. Data Model
Long-run growth in output 2.00% 2.00%
Ratio of R&D expenditure to GDP 2.91% 2.41%
Fraction of patents that are sold 15.6% 15.2%
Average duration until a sale 5.34 yrs. 5.28 yrs.
Sale duration, c.v 0.82 1.09
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Figure 5: The distributions for �rm size (left panel) and productivity (right panel).

The unique invariant �rm-size distribution associated with this calibration is shown by

the left panel of Figure 5. This distribution resembles a log normal. The coe¢ cient of

variation for the distribution is 50%. This falls short of the 200% observed in the data.

So, it should though. Surely all di¤erences in productivity across �rms are not accounted

for simply by di¤erences in innovation. The right panel of Figure 5 illustrates how the

productivity distribution shifts rightward over time due to growth in the economy. (Here

the histograms calculated from the Monte Carlo are replaced by a �tted density function

so the movement could be highlighted). A change in shape of the distribution over time is

evident. Last, Figure 6 shows, for both the data and model, the frequency distribution over

the duration for a sale. As can be seen, it appears to be harder to a¤ect a sale in data than

in the model.

5 Findings

The importance of a resale market for patents will be gauged. To do this, various experiments

that change the e¢ ciency of the patent market will be entertained. The e¢ ciency of the
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Figure 6: Sale duration distributions, data and model.

resale market for patents is increased in stages. First, an experiment is performed where the

meeting rate for matches is allowed to rise. While it may be easier for buyers and sellers to

meet now, a seller�s idea may still not be well suited for the buyer. The next experiment

considers a situation where patent agents can �nd buyers who are perfect matches for the

ideas that they are selling. So, there is no mismatch between buyers and sellers on the

patent market. Still, innovating �rms produce ideas that are not ideally suited for their own

businesses and this injects a friction into the analysis. A patent that is not incorporated

into an innovator�s production process will only have a �nite life on the resale market.

Additionally, it may take time to �nd a buyer. The �nal experiment focuses on the case

where innovating �rms produce ideas that are tailored toward their own production activity.

Here ideas are perfectly matched with the developer. The change in welfare from moving

from one environment to another is calculated. The metric for comparing welfare will be

discussed now.

5.1 Welfare Comparisons

Consider two economies, namely A and B, moving along their balanced growth paths. The

consumption/output ratio and gross growth rate for economy A are given by cA=oA and gA.
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Similar notation is used for country B. To render things comparable, start each country

o¤ from an initial position where oA = oB = 1. Thus, cA = cA=oA and cB = cB=oB;

i.e., the initial consumption/output ratio for each country can be used as measure of initial

consumption. Now, the levels of welfare for economies A and B are given by

WA =
1X
t=1

�t�1
(cAt )

1�"

1� " =
(cA1 =o

A
1 )
1�"

(1� ")[1� �(gA)1�"]
;

and

WB =
(cB1 =o

B
1 )
1�"

(1� ")[1� �(gB)1�"]
:

How much would initial consumption in economy A have to be raised or lowered to make

people have the same welfare level as in economy B? Denote the fractional amount in gross

terms by � (which may be less than one). Then, � must solve

(�cA1 =o
A
1 )
1�"

(1� ")[1� �(gA)1�"]
= WB

so that

� = (WB=WA)1=(1�"):

This will be the welfare measure that is used in all experiments.

5.2 Increasing the Contact Rate for Matches, �

The patent resale market mitigates the initial misallocation of ideas. Still, it takes time to

sell a patent as the patent agent may not be able to �nd a buyer. To understand how this

friction in matching a¤ects the economy, it is useful to look at how a change in the scale

factor for the matching function, �, a¤ects key variables. Figure 7 summarizes the results.

A rise in the contact rate reduces the time that it takes to �nd a buyer, as the lower

panel of Figure 7 illustrates. The rate of innovation also falls, which is more surprising. The

consequences of failing to innovate are now lessened because it will be easier for a �rm to

buy a patent. Growth (upper panel) increases along with e¢ ciency in matching. So does

welfare. On the one hand, if patent resale market was completely closed, the welfare loss
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Figure 7: The impact of an increase in contact rate for matching on sales duration, growth,

innovation and welfare.

would be equivalent to losing approximately 4.8% of initial consumption. On the other hand,

if the e¢ ciency of the market was at its extreme (the minimum value for � that results in all

buyers meeting a patent agent with probability 1), welfare would be 10.4% higher than the

calibrated economy. The upshot is that the resale market for patents plays an important

role in the economy.

5.3 Perfectly Directed Search

A second source of ine¢ ciency in the model is the random search technology used in the

patent market. In the baseline model, conditional upon a meeting between a buyer and a

resale agent, the proximity of the patent to the �rm is drawn from a uniform distribution.

Instead imagine a directed search structure, where patent agents are able to target the

segment of the economy that exactly matches the patent they want to sell. In such a case,

whether or not a patent agent meets a buyer is still a probabilistic event governed by the

matching function. The proximity between the patent and the �rm would be nonstochastic

and equal to unity; in other words, a perfect match. The level of welfare in this alternative

economy is 7.4% higher than in the baseline one. The output growth rate increases slightly
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from 2% to 2.3%, despite a small decline in the innovation rate. The fraction of patents

sold increases from 15.2 to 24.2%. But most strikingly, the decomposition of growth reveals

that fraction of growth due to patents sold doubles from 15.7 to 34.8%. This decomposition

can be done using equation (27). Note that there are two terms in the brackets. The �rst

term can be used to measure the contribution to growth from the ideas that �rms keep, the

second from the ones that they sell. The table below summarizes the results.

Table 6: Perfectly Directed Search
Baseline Model Directed Search

Output growth rate, g�=(�+�) � 1 0.020 0.023
Innovation rate, i 0.47 0.45
Welfare gain, �� 1 0.00 0.07
Fraction of patents sold 0.15 0.24
Growth from patents sold 0.16 0.35

5.3.1 Perfectly Directed Search with a High Contact Rate

Now, redo the above experiment while also using a high contact rate for matches. Output

growth is now much higher at 3.2%, even though innovation is slightly lower than in the

baseline model. This re�ects a reduction in misallocation. The reduction in innovation is

re�ected by a slightly higher consumption/output ratio. As can be seen, now most patents

are sold. Economic welfare is 28% higher.

Figure 8 gives the upshot from the experiments that have been conducted so far. It shows

how the cumulative distribution function for ideas, or for x, changes across the various ex-

periments. First, in the data �rms produce ideas that are not well suited for their own lines

of business, as can be seen from the distribution labeled �Empirical�. (Recall that a higher

value for x 2 [0; 1] indicates that an idea is better suited for the �rm�s business activity.) In

the baseline model, a �rm is free to sell such an idea. A �rm that fails to innovate is free to

buy one from another �rm. This leads to a better distribution of ideas, as is re�ected in the

distribution function for the baseline model after transactions on the secondary market for

patents have been consummated. The distribution function for the baseline model stochas-

tically dominates, in the �rst-order sense, the empirical distribution. When the contact rate
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Figure 8: Misallocation of ideas. Cumulative distribution functions for x.

for matching is high it relatively easy to consummate a patent sale. The distribution for x

improves�see the histogram labeled �High Contact Rate�, which stochastically dominates

the one for the baseline model. Of course, if search could be perfectly directed things would

be better still��High Contact w Directed Search�, which stochastically dominates all other

distributions.

Note that not all �rms sell their patents, even though they are not perfectly matched

with their ideas. This occurs because are still some frictions left in the patent market. First,

there are more sellers than buyers on the market, so not all patents will be immediately sold.

Second, patents have a �nite life on the market and hence su¤er some depreciation. Both

these factors imply that the price at which a �rm can sell a patent, q, will be less than what

it is worth to a perfectly matched �rm.
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Table 7: Perfectly Directed Search with High Contact
Baseline Model Directed Search with High Contact

Output growth rate, g�=(�+�) � 1 0.020 0.031
Innovation rate, i 0.47 0.468
Welfare gain, �� 1 0.00 0.28
Fraction of patents sold 0.15 0.81
Growth from patents sold 0.16 0.83
Consumption/output 0.805 0.813
Duration, yrs 5.23 0.00
Seller/buyers 1.23 0.69
mean, x�after patent transactions 0.67 0.99
St. dev, x�after patent transactions 0.21 0.03

5.4 Removing the Misallocation of Ideas

The central ine¢ ciency in the framework derives from the fact that �rms develop ideas that

are imperfect matches for the own production processes. The presence of a secondary market

for patents mitigates this problem. Suppose that an innovating �rm always comes up with

an idea that is a perfect match for its production process. That is, let each innovating �rm

always draw x = 1. In this situation, the economy could increase its growth rate from 2 to

3.4%, a big jump. Welfare would increase by 35%. This illustrates that the frictions arising

from mismatches in innovation are large.

Table 8: Perfect Innovation
Baseline Model Perfect Innovation

Output growth rate, g�=(�+�) � 1 0.020 0.034
Innovation rate, i 0.47 0.49
Welfare gain, �� 1 0.00 0.35

5.5 Importance of the Seller�s Bargaining Power, !

The baseline calibration assumes that the bargaining power of buyers and sellers (patent

agents) are equal. It turns out that this gives the best �t for calibration. It�s instructive to

show how the model behaves for varying values of !, the bargaining power of patent agents.

To see this, direct attention to Figure 9.
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Figure 9: The impact of the seller�s bargaining power on sales duration, the price of a patent,

innovation, the odds of �nding a seller, growth and welfare.

To begin with, observe that the price received by the selling �rm, q, rises continuously

with the bargaining power of the patent agent, !. Recall that the selling �rm takes all of

the surplus earned by the patent agent, as re�ected in the form of (20). Next, as the price

rises so does the average time it takes to a¤ect a sale. This makes sense. Buyers will become

choosier about the patents they buy as prices rise; i.e., they will demand patents that are

closer to their line of business. Interestingly, the rate of innovation is [ shaped in !. There

are two forces at work here. On the one hand, prices rise with the seller�s bargaining power.

This increases the value of a selling �rm, S(z; s), and spurs innovation, as can be seen from

(14). On the other hand, the odds of buying a patent increase with !, as there are more

sellers on the market relative to buyers. The value of a buying �rm, B(z; s), rises on this

account. This lowers the incentive to innovate; again see (14). At low values for ! the

second e¤ect dominates while at high values the �rst one does. This results in the [ shape.

Despite the nonmonotone behavior for innovation, both growth and welfare increase in !.

It is better for the economy when innovating �rms capture the payo¤s from developing new

ideas.
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6 Robustness Analysis

Central to the analysis is the notion of how distant a new patent is to a �rm�s location in

the technology spectrum. The distance between a new patent and a �rm�s patent portfolio

is measured in a fairly general way using the metric (1), which is governed by the parameter

�. Figure 3 illustrates how the empirical distance distribution changes with �. When � = 1

the distance metric just computes the average distance between the new patent and the

other patents in the �rm�s portfolio. Lower values for � put higher weight on patents in the

portfolio that are closer to the new patent. The analysis in the paper is done for three values

of � : � = 1=3. � = 2=3 (the baseline model), and � = 1 (average distance). The results hold

for all three values of �. Appendix 9.3 details some of the �ndings. In a nutshell:

1. The regression results reported in Section 3 do not change in a material manner.

2. The calibration targets can be hit for all three values of �.

3. The model behaves essentially the same way for the three distance measures. For

example, shutting down the patent resale market in the baseline model led to a welfare

loss of 4.8% in terms of consumption. This welfare loss rose to 5.4%, when � = 1, and

fell to 3.5%, when � = 1=3. Lower values for � compress the distribution for new ideas;

i.e., new ideas are closer on average to the �rm�s location on the technology spectrum.

Therefore, shutting down the patent market has a smaller e¤ect when � is lower.

The empirical sale duration distribution is another object that disciplines the model.

In the baseline, the duration is de�ned as the time between the sale and grant dates of

all patents sold between 1980 and 2012. Di¤erent methodologies can be considered. One

can consider using the application date instead of the grant date since some patents are

sold before they are granted. Patents need to be observed by potential buyers before being

considered �on the market�. The date of the �rst citation a patent receives can be a good

proxy for this. Lastly, it is possible that excluding more recent observations might prevent

the confounding e¤ects of a potential truncation bias. The analysis is repeated with the three
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new sale distributions, and the main �ndings remain robust. Appendix 9.3 details some of

the �ndings.

7 Conclusions

A model of the market for patents is developed here. Each period a �rm conducts research

and development. This R&D process may spawn ideas. Some of the ideas are useful for a

�rm�s line of business, others are not. A �rm can patent and sell the ideas that are not.

The fact it can sell ideas provides an incentive to engage in R&D. Likewise, �rms that fail

to innovate can attempt to buy ideas. This allows a �rm to grow its business. The e¢ ciency

of the patent market for matching ideas with �rms has implications for growth. These are

examined here.

Empirical analysis, drawing on the NBER-USPTO patent grant database and patent

reassignment data available from Google Patent Beta, established �ve useful facts. First,

somewhere between 15 and 20% of patents are sold. Second, it takes on average 5.34 years

to sell a patent. Third, a �rm�s patent stock contributes more to its market value and sales

the closer it is to the �rm in terms of average technological distance. Fourth, a patent is

more likely to be sold the more distant it is to a �rm�s line of business. Fifth, when a patent

is sold it is closer to the buyer�s line of business than to the seller�s. These facts suggest

that a resale market for patents may play a important role in correcting the misallocation

of ideas across �rms. It may also in�uence a �rm�s R&D decision.

The developed model is calibrated to match several stylized facts characterizing the U.S.

data, such as the postwar rate of growth, the ratio of R&D spending to GDP, the fraction

of patents sold, the average time it takes to sell a patent, and the dispersion in the length

of time that it takes to sell a patent. The importance of a market for selling patents is

then assessed. This is done by conducting a series of thought experiments that successively

increase the e¢ ciency of the patent market. The e¢ ciency of this market is important for

economic growth and welfare.
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8 Theory Appendix

8.1 Balanced Growth

Proof. The proof proceeds using a guess and verify procedure (or the method of undeter-

mined coe¢ cients).

Point (1). To derive the interest and rental rates, imagine the problem of a con-

sumer/worker who can invest in one period bonds that pay a gross interest rate of 1=r.

The Euler equation for asset accumulation will read

c�" = (�=r)(c0)�":

Along a balanced growth path, if the mean level of productivity grows at rate g then con-

sumption, the capital stock and output must grow at rate g�=(�+�). This fact can be gleaned

from the production function (2), by assuming z grows at rate g, that capital and output

grow at another common rate, and that labor remains constant. Therefore, r = �=g"�=(�+�).

In standard fashion, the rental rate on capital is given by er = 1=r�1+� = g"�=(�+�)=��1+�.
Point (4). The form of the threshold rule for buying a patent follows from the fact the

sum of the surplus (sans price) accruing to a �rm that buys a patent and the surplus (sans

price) to the patent agent must be greater than zero; otherwise, a non-negative sale price, p,

for the patent would not exist. First, plug the solutions for w and er, or (19) and (25), into
the pro�t function (7) to obtain

�(z; s) = �
z

z�=(�+�)
= �~z;

with

� � �

g�=(�+�)

�
�

g�=(�+�)=� + � � 1

�[����=(�+�)]=�
: (32)

Second, conjecture that the value functions V (z; s) and A(s) have the forms V (z; s) =

v1ez + v2ez and A(s) = aez. Third, given the above, note that the (sans price) surpluses for a
buying �rm and the patent agent are given by

�(~z + 
xez)� �~z + rV (z + 
xz; s0)� rV (z; s0) = (� + rv1
g�=(�+�)

)
xez;
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and

��rA(s0) = ��rg�=(�+�)aez [cf. (17)]:
Finally, note that whether or not the sum of the above two equations is nonnegative does

not depend on ez. This sum is also increasing in x. Solving for the value of x that sets the

sum to zero yields

xa =
�rg�=(�+�)a

(� + rv1=g�=(�+�))

: (33)

Thus, xa is a constant.

Point (8). The solutions for patent prices are easy to obtain. Insert the above formulae

for the (sans price) surplus for a buying �rm and the (sans price) surplus for a patent agent

into expression (16) to get

P (z; x; s) =
�
(1� !)�rg�=(�+�)a+ !(� + rv1=g�=(�+�))
x

�ez:
It is immediate from (20) that q = aez, predicated upon the guess A(z) = aez.
Point (5). It will now be shown that the value function for the patent agent has the

conjectured linear form. Focus on equation (15), which speci�es the solution for A. The

price for a patent does not depend on z, given Point (8). Additionally, D(x) = U [0; 1].

Furthermore, Ia = 1 for x > xa and is zero otherwise. Thus,

A(s) = aez = ma(na=nb)

Z 1

xa

P (z; x; s)dx+ [1�ma(na=nb)Pr(x � xa)]�rA(s0);

from which it follows that

a = �rg�=(�+�)a�ms(na=nb)(1� xa)!�rg�=(�+�)a (34)

+ms(na=nb)!(� + rv1=g
�=(�+�))
(1� xa)(1 + xa)=2:

Point (2). The value function for a buying �rm can be determined in a manner similar

to that for A in Point (5). Here

B(z; z) = b1~z + b2ez;
with

b1 = � + rv1=g
�=(�+�); (35)
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and

b2 = �mb(na=nb)(1� xa)(1� !)�rg�=(�+�)a+ rv2g�=(�+�) (36)

+mb(na=nb)(1� !)(� + rv1=g�=(�+�))
(1� xa)(1 + xa)=2:

To derive this solution, the results in Points (4) and (8), along with the conjectured solution

for V , are used in equation (8). Similarly, using equation (11) it can be shown that the value

function for a seller is given by

S(z; s) = s1~z + s2ez;
with

s1 = � + rv1=g
�=(�+�); (37)

and

s2 = �a+ rv2=g
�=(�+�): (38)

Last, following from (10),

K(L(z; x; s); s) = k1~z + k2(x)ez;
with

k1 = � + rv1=g
�=(�+�); (39)

and

k2(x) = (� + rv1=g
�=(�+�))
x+ rv2=g

�=(�+�): (40)

Point (3). The threshold rule for keeping or selling a patent is determined by the condi-

tion

k1~z + k2(xk)ez=s1~z + s2ez;
that is, at the threshold a �rm is indi¤erent between keeping or selling the patent. Now,

s1 = k1 so that

(� + rv1=g
�=(�+�))
xk + rv2g

�=(�+�) = �a+ rv2g
�=(�+�):

Hence,

xk =
�a

[� + rv1=g�=(�+�)] 

; (41)
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a constant.

Point (6). Turn now to the beginning-of-period value function for the �rm and the rate

of innovation that it will choose. By using the linear forms for the value functions B(z; z),

K(z; z; x), and S(z; z), the fact that b1 = k1 = s1, and the property that the threshold rule

takes the form Ik = 1 for x > xk and Ik = 0 otherwise, the �rm�s dynamic programming

problem (13) can be rewritten as

V (z; s) = ez max
i2[0;1]

f[X(xk)s2+
Z
xk

k2(x)dX(x)� b2]i�
�

1 + �
i1+�g+ (�+ rv1=g�=(�+�))~z + b2ez:

Di¤erentiating with respect to i then gives

X(xk)s2 +

Z
xk

k2(x)dX(x)� b2 = �i�;

from which (26) follows. Using the solution for i, as given by (26), in the above programming

problem yields

V (z; s) =
�

(1 + �)�1=�
[X(xk)s2 +

Z
xk

k2(x)dX(x)� b2]1+
1
�ez+ (� + rv1=g�=(�+�))~z + b2ez:

It then follows that

v1 =
g�=(�+�)

g�=(�+�) � r�; (42)

and

v2 = b2 +
�

(1 + �)�1=�
[X(xk)s2 +

Z
xk

k2(x)dX(x)� b2]1+
1
� : (43)

Point (7). The gross rate of growth for aggregate productivity, g, will now be calculated.

Suppose that aggregate productivity is currently z. A fraction i of �rms will innovate today.

Those �rms that draw x > xk will keep their patent. The productivity for these �rms will

increase. The fraction 1� i of �rms will fail to innovate. Out of these �rms the proportion

mb(na=nb) will �nd a seller on the patent market. They will buy a patent when x > xa.

Thus, z will evolve according to

z0 = z+ i

Z 1

xk


xzdX(x) +mb(na=nb)(1� i)
Z 1

xa


xzdx:

This implies (27).
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Point (9). The number of buyers on the patent market is given by nb = 1 � i; all �rms

that fail to innovate will try to buy a patent. Along a balanced growth path, the number of

patent agents, na, must satisfy the equation

na = �na[1�ma(na=nb)(1� xa)] + �iX(xk):

Focus on the righthand side. Take the �rst term. Suppose that there are na patent agents

at the beginning of the period. A fraction � of these agents will survive. Out of these,

mb(na=nb)(1� xa) will �nd a buyer. Thus, they will not be around these next period. Move

to the second term. A mass of iX(xk) new �rms will decide to sell their patents Out of

this � will survive. The sum of these two terms equals the new stock of patent for sale, na.

Solving yields

na =
�iX(xk)

1� �[1�ma(na=nb)(1� xa)]
and

na
nb
=

�iX(xk)

(1� i)f1� �[1�ma(na=nb)(1� xa)]g
:

Equations (28) and (29) follow immediately.

Point (10). The 12 constants, viz a, b1, b2, k1, k2, �, s1, s2, v1, v2, xa and xb, are

speci�ed by the 12 non-linear equation (32) to (43). The equations include the variables

g; i;r;ma(na=nb); and mb(na=nb). So, equations (24), (26), (27), (28) and (29) must be

appended to the system to obtain a system of 17 equations in 17 unknowns. This system

does not depend on either ez or ez.
8.2 Existence of a Unique Stationary Firm-Size Distribution

Proof. By Stokey and Lucas (1989, Theorem 12.12), it is su¢ cient to establish three things.

First, the transition operator associated with (31) needs to satisfy the Feller Condition [see

Stokey and Lucas (1989, p. 220]. Second, it is required that this transition operator is

monotone [Stokey and Lucas (1989, p. 220]. Third, the transition operator must satisfy a

mixing condition [Stokey and Lucas (1989, Assumption 12.1)].

The stochastic di¤erence equation (31) is continuous in bz, trivially. It then follows,

using Stokey and Lucas (1989, Theorem 8.9 and Exercise 8.10), that a transition operator
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connected with (31) exists and satis�es the Feller property. Denote this operator by P (bz;B),
which gives the probability measure connected with a move for z from the point bz into the
set B. Similarly, let Q(B) represent the probability measure connected with drawing an

x 2 B. To establish monotonicity, consider the integralZ
H(z0)P (bz; dbz0) = Z H( 1

g
bz + 


g
x)Q(dx);

for any non-decreasing function H(z0). Clearly,Z
H(
1

g
bz + 


g
x)Q(dx) �

Z
H(
1

g
z +




g
x)Q(dx);

for all bz >z. Thus, P is monotone.
Finally, turn to the mixing condition. The long-run mean of the above process is z� =

E[x]z, where 0 < z� < z. To satisfy the mixing condition, it su¢ ces to show that if

the process starts o¤ at bz = 0 then there exists some chance that it will cross into the

interval [z�; z], and analogously if originates at the bz = z then there are some odds that

it will cross into the set [0; z�]. Clearly, if the process starts o¤ from bz = z then there are
some odds that it will cross into the set [0; z�]. The �rm can draw 0 with strictly positive

probability, as can be seen from (30). So, just think about drawing 0 for some prolonged

but �nite period of time, T + 1. Eventually, the process will cross into [z�; z]; this will take

a maximum of T + 1 periods where T = ln(z�=z)= ln(1=g). This occurs with probability,

f(1� i)[(1�mb) +mbxa] + ixkgT+1 > 0. Likewise, if the process starts o¤ from bz = 0 then
there are some odds that it will cross into the set [z�; z]. Think about drawing an x shock

in the interval [x; 1], where x = maxfE[x] + "; xa; xkg with " > 0. This occurs with some

strictly positive probability denoted here, in this proof only, by ��again see (30). Imagine

drawing this shock for some long, �nite period of time. Then, it will take a maximum of t+1

periods for the process to cross into the set [z�; z], where t = ln[1 � (z�=x)(1 � �)=�]= ln �,

with � � 
=g. The probability of this occurring is �t+1 > 0.
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9 Empirical Appendix

9.1 Data Description

In a nutshell, data from three sources are used: United States Patent and Trademark O¢ ce

(USPTO), NBER Patent Database Project (PDP), and Compustat. The �rst sources con-

tains data on the patents that are reassigned across �rms. The second is used to retrieve

information on the technological classes for patents and the stocks of patents for �rms.

Facts about employments, stock market values and sales for �rms are obtained from the

third source.

9.1.1 Patent Assignment Data (PAD)

The patent assignment data is obtained from the publicly available United States Patent and

Trademark O¢ ce (USPTO) patent assignment �les hosted by Google Patents Beta. These

�les contain all records of changes made to U.S. patents for the years 1980-2011. The �les

are parsed and combined to create the dataset. The following variables are kept:

� Patent number: The unique patent number assigned to each patent granted by the

USPTO.

� Record date: Date of creation for the record.

� Execution date: Date for the legal execution of the record.

� Conveyance text: A text variable describing the reason for the creation of the record.

Examples are: �Assignment of assignor�s interest�, �Security Agreement�, �Merger�,

etc.

� Assignee: The name of the entity assigning the patent (i.e., the seller if the patent is

being sold).

� Assignor: The name of the entity to which the patent is being assigned (i.e., the

buyer if the patent is being sold).
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� Patent application date: Date of application for the patent.

� Patent grant date: Date of grant for the patent.

� Patent technology class: The technology class assigned to the patent by the USPTO

according to its internal classi�cation system.4

The entries for which this information is inaccessible are dropped from the sample.

During the parsing process, the following are done:

� Only transfer agreements between companies are kept.

� Only utility patents are kept; entries regarding design patents are dropped.

Following the process described above, and after dropping duplicate entries, the number

of records left in the sample is 966,427. Using the string variable that states the reason for

the record, all reassignments that are not directly related to sales are dropped (for instance,

mergers, license grants, splits, mortgages, court orders, etc.)

In order to create an even more conservative indicator of patent reassignments, a company

name-matching algorithm is employed, so that marking internal transfers as reassignments

can be avoided, where patents are moved within the same �rm, or between the subsidiaries

of the �rm. The idea behind the company name-matching algorithm is to clean the string

variables for the assignor and the assignee of all unnecessary indicators and company type

abbreviations. If the cleaned assignor and assignee strings are equal, the type of the record

is changed to internal transfer, provided that it was identi�ed as a reassignment before.

The pseudo-code for the algorithm is as follows:

1. All letters are made upper case.

2. The portion of the string after the �rst comma is deleted. (e.g., AMF INCORPO-

RATED, A CORP OF N.J. becomes AMF INCORPORATED)

4 This variable is not used, however, to represent the technology class for a patent, as is discussed below.
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3. If the string starts with �THE�, the �rst 4 characters are deleted.

4. All non-alphanumeric characters are removed.

5. Trailing company identi�ers are deleted if found. The string goes through this process

5 times. The company identi�ers are the following: B, AG, BV, CENTER, CO,

COMPANY, COMPANIES, CORP, CORPORATION, DIV, GMBH, GROUP, INC,

INCORPORATED, KG, LC, LIMITED, LIMITEDPARTNERSHIP, LLC, LP, LTD

NV, PLC, SA, SARL, SNC, SPA, SRL, TRUST, USA, KABUSHIKI, KAISHA, AK-

TIENGESELLSCHAFT, AKTIEBOLAG, SE, CORPORATIN, CORPORATON, TRUST,

GROUP, GRP, HLDGS, HOLDINGS, COMM, INDS, HLDG, TECH, and GAISHA.

6. If the resulting string has length zero, that string is declared as needing protec-

tion. Some examples that are protected by this procedure: �CORPORATION, ORA-

CLE�, �KAISHA, ASAHI KAISEI KABUSHIKI�, �LIMITED, ZELLWEGER ANA-

LYTICS�.

7. The algorithm is re-run from the beginning on the original strings with one di¤erence:

The strings that are declared as needing protection skip the second step.

At the end of this process, the number of records that correspond to patent reassignments

is 767,815.

9.1.2 USPTO Utility Patents Grant Data (PDP)

The patent grant data comes from the NBER Patent Database Project (PDP), and contains

data for all the utility patents granted between the years 1976-2006. How the PDP and PAD

are linked to each other is discussed later on.

9.1.3 Compustat North American Fundamentals (Annual)

The Compustat data for publicly traded �rms in North America between the years 1974-

2006 is retrieved from Wharton Research Data Services. The Compustat database and the
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NBER PDP database are connected using the matching procedure provided alongside the

PDP data. Extensive information on how the matching is done can be found on the project

website.

9.1.4 Connecting PAD and PDP Data

There are two di¤erent questions of interest, which require combining the Patent Database

Project data with the Patent Assignment Data. The �rst analysis is on whether a patent

is ever reassigned (i.e. sold) over its entire lifetime, and what determines the probability of

this event. For this purpose, it is only necessary to connect the information from PAD to

the �rm which applied for the patent. This is easily done by using the unique patent number

each patent is given by USPTO.

The second question involves the change in match quality of the patent when it is traded

between two �rms. In this case, one needs to know the characteristics of both the assignor

and the assignee �rm for each reassignment record in the PAD dataset. However, there is

no existing connection established between the PAD and PDP datasets. To connect these

datasets, the company name-matching algorithm described earlier is employed.

9.2 Variable Construction

9.2.1 Patent-to-Patent Distance Metric

In order to construct a topology on the technology space empirically, it is necessary to

create a distance metric between di¤erent technology classes. Such a metric enables one

to speak about the distance between two patents in the technology space, and leads to the

construction of more advanced metrics.

The �rst 2 digits of the IPC (International Patent Classi�cation) codes of a patent are

chosen to indicate its technology class. The IPC code used for a patent is taken from the

PDP data and di¤ers from the classi�cation scheme employed in the PAD data. It should be

noted that the PDP data actually contain more than a single IPC class for a single patent
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in some cases, since the IPC codes were assigned using a concordance between the IPC and

the internal classi�cation system of USPTO. The IPC code provided in the PDP �le with

assignees is used in such cases, which is unique for each patent.

As discussed in the main text, a plausible distance metric between patent classes can

be generated by looking at how often two di¤erent technology classes are cited together.

Formally:

d(X;Y ) � 1� #(X \ Y )
#(X [ Y ) ; with 0 � d(X; Y ) � 1:

where#(X\Y ) denotes the number of patents that cite technology classesX and Y together,

and #(X [ Y ) denotes the number of patents which either cite X or Y or both.

9.2.2 De�nition of a Firm in the Data

There are four di¤erent entity identi�ers in the PDP dataset. The USPTO assignee number

is the identi�er provided by USPTO itself, but the creators of the PDP have found that it is

not very accurate. A single assignee might have many di¤erent USPTO assignee numbers.

The PDP uses some matching algorithms on the names of the assignees to create a more

accurate assignee identi�er, called PDPASS. They also link the patent data to Compustat

data. Compustat has an identi�er called GVKEY. However, these refer to securities rather

than �rms. So a single �rm might be represented by many GVKEY�s. For this reason, they

use a dynamic matching algorithm again to link all GVKEY�s to certain PDPCO�s, which

is a unique �rm identi�er that is created by the authors of the project. They create this

identi�er in order to be able to account for name changes, mergers & acquisitions, etc. This

paper follows the same procedure.

9.2.3 Patent-to-Firm Distance Metric

In order to measure how close a patent is to a �rm in the technology spectrum, a metric is

necessary. However, throughout their lifetimes �rms register patents in multiple technology

classes. Hence the patent-to-patent distance metric is insu¢ cient for this purpose. One
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possible way to construct a patent-to-�rm distance metric is to compare a patent to the past

patent portfolio of the �rm. The distance measure between each patent a �rm registered

in the past, and the new patent in question can be calculated using the patent-to-patent

distance metric o¤ered earlier. The distance between the �rm and the patent should be a

function of these separate distances. Equation (1) de�nes a parametric family of distance

measures indexed by �. The analysis is conducted for several values of �.

9.2.4 Creating the Patent Stock Variable for Compustat Firms

As argued in Hall, Ja¤e and Trajtenberg (2005), the citation-weighted patent portfolio of

a �rm is a plausible indicator of the intangible knowledge stock of a �rm. The authors

demonstrate that this measure has additional explanatory power for the market value of a

�rm above and beyond the conventional discounted sum of R&D spendings of a �rm, since

R&D is a stochastic process which can succeed or fail; whereas patents are quanti�able

products of this process when it is successful. Furthermore, it is revealed that the number

of citations a patent receives is a �ne indicator of the patent�s worth, increasing the market

value of a �rm at an increasing rate as the number of citations go higher.

Since all the future citations to a patent cannot be observed at any given date, the

citations variable su¤ers from a truncation problem. There are also technology class and

year �xed e¤ects to consider. All of these issues are thoroughly investigated by Hall, Ja¤e

and Trajtenberg (2005); they provide a variable called hjtwt in order to correct the citation

number of each patent in the PDP dataset. This study uses their correction method. In the

end, a corrected citations number for each patent is obtained. In order to create the patent

stock variable of a �rm (PDPCO), the corrected citations number across all the patents of

a �rm are added together at each year. This variable is called patent stock.

In addition to the patent stock, the corrected citations number across all the patents

of a �rm, multiplied by the patent-to-�rm distance generated at the date of the patent�s

inclusion into the portfolio are also added together to create a new variable. This variable

quanti�es the overall waste of patent stock caused by the mismatch between the technology
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Figure 10: The impact of an increase in contact rate for matching on sales duration, growth,

innovation and welfare (for � = 1=3 and � = 1:0).

class of the patents and the �rm. This variable is expected to have a negative e¤ect on

�rm moments such as real sales and market value of equity. The variable is called distance

adjusted patent stock.

9.3 Robustness Analysis

The behavior of the model does not change signi�cantly as � changes. For example, Figure

10 illustrates how the model behaves as the contact rate for matches, �, changes, for � = 1=3

and � = 1:0 (average distance). As can be seen, the results closely resemble those reported

in Figure 7 for the baseline model.

Table 9 exhibits the performance of the model in matching the calibration targets. Com-

paring Table 9 to Table 5 reveals there is no noticable di¤erence in the performance.
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Table 9: Calibration Targets - Robustness 1
Target U.S. Data � = 1 � = 1=3
Long-run growth in output 2.00% 2.00% 2.00%
Ratio of R&D expenditure to GDP 2.91% 2.34% 2.50%
Fraction of patents that are sold 15.6% 15.9% 13.3%
Average duration until a sale 5.34 yrs. 5.91 yrs. 4.53
Sale duration, c.v 0.82 1.08 1.10

Likewise, the empirical �ndings are qualitatively and quantitatively similar when the

distance measures created by � = 1=3 and � = 1:0 are employed. The signi�cance of the

results are maintained, and the coe¢ cients and the ratios of interest are similar in magnitude.

Tables 10, 11, and 12 show the regression results with the di¤erent metrics.

Table 10: Firm Moments - Robustness
Variable log real sales log market value

� = 1 � = 1=3 � = 1 � = 1=3
log patent stock 0:191��� 0:194��� 0:037��� 0:039���

(0:008) (0:008) (0:008) (0:008)
log dist-adj pat stock �0:006��� �0:008��� �0:018��� �0:021���

(0:003) (0:003) (0:003) (0:003)
log employment 0:936��� 0:936��� 0:728��� 0:728���

(0:008) (0:008) (0:008) (0:008)
intercept yes yes yes yes
year yes yes yes yes
�rm �xed e¤ect yes yes yes yes
Obs. 23,028 23,028 36,094 36,094
R2 0.96 0.96 0.92 0.92
Standard errors are reported in parentheses.

*10%, **5%, ***1% signi�cance.
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Table 11: Patent Resale Decision - Robustness
Variable Indicator (=1 if sold)

� = 1 � = 1=3
distance 0:0228��� 0:0193���

(0:001) (0:001)
patent quality 0:0004��� 0:0004���

(0:000) (0:000)
log (size of patent portfolio) �0:0163��� �0:0159���

(0:000) (0:000)
intercept yes yes
year yes yes
�rm �xed e¤ect yes yes
Obs. 2,564,305 2,564,304
R2 0.4197 0.4198
Standard errors are reported in parentheses.

*10%, **5%, ***1% signi�cance.

Table 12: Distance Reduction on Resale - Robustness
Variable Change in distance

d (p; fb)� d (p; fs)
� = 1 � = 1=3

intercept �0:176��� �0:123��
(0:056) (0:067)

year �xed e¤ect yes yes
seller �xed e¤ect yes yes
Obs. 25,170 25,170
R2 0.4210 0.3626
Standard errors are reported in parentheses.

*10%, **5%, ***1% signi�cance.

The three di¤erent sale duration distributions are created using the following de�nitions

for sale duration:

1. The di¤erence between the sale date and the application date for transactions between

1980-2012.

2. The di¤erence between the sale date and the date of receiving the �rst citation for

transactions between 1980-2012.
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3. The di¤erence between the sale date and the grant date for transactions between 1980-

2000.

The results of the calibration exercise can be found on Table 13. The model achieves

a good �t despite changes in the shape and the mean of the sale distribution. Likewise,

the results of the quantitative exercises do not vary by much. For comparison, the wel-

fare contribution of the market for ideas was 4.8% in consumption equivalent terms in the

baseline exercise. This number is found to be 4.8%, 4.9%, and 4.5% for the sale duration

distributions calculated using the application date, the �rst citation date, and the grant date

with the smaller sample respectively. The other magnitudes change more or less in the same

proportion between these welfare numbers, and are qualitatively the same.

Table 13: Calibration Targets - Robustness 2
Target Data App. Data First Cit. Data 1980-2000
Long-run growth in output 2.00% 2.00% 2.00% 2.00% 2.00% 2.00%
Ratio of R&D expenditure to GDP 2.91% 2.41% 2.91% 2.41% 2.91% 2.42%
Fraction of patents that are sold 15.6% 15.2% 15.6% 15.4% 15.6% 14.1%
Average duration until a sale (yrs.) 6.06 5.27 5.09 5.21 6.70 5.57
Sale duration, c.v 0.79 1.09 0.80 1.10 0.72 1.09

57


